A training set for the ReaxFF force field optimization

Non-periodic clusters (Mo/O/S interactions)

Cyan: Mo atoms; Red: O atoms; Yellow: S atoms

• Non-periodic clusters' point charges

ReaxFF: Red, top number Mulliken Charges (Qchem): Black, bottom number

Cyan: Mo atoms; Red: O atoms; Yellow: S atoms

• Non-periodic clusters' cohesive energies

Cluster	ReaxFF (kcal/mol)	DFT (kcal/mol)	Diff. (%)	
MoO	-146.73	-143.85	2.00	
MoS	-105.17	-106.98	1.69	
MoO_2	-295.11	-291.17	1.35	
MoS_2	-202.83	-205.23	1.17	
MoO ₃	-425.38	-427.56	0.51	High weight
MoS ₃	-292.25	-292.17	0.03	
MoO ₂ S	-382.88	-381.65	0.32	
$MoOS_2$	-339.14	-336.63	0.75	
Mo_2O_4	-650.25	-635.48	2.32	
Mo_2O_5	-789.12	-798.21	1.14	
Mo ₂ O ₆	-936.16	-976.83	4.16	
$Mo_2O_3S(I)$	-615.29	-590.70	4.16	
Mo_2O_3S (II)	-632.06	-606.06	4.29	
Mo_2O_3S (III)	-604.12	-576.63	4.77	
$Mo_2O_4S(I)$	-750.68	-754.59	0.52	
Mo_2O_4S (II)	-738.96	-738.27	0.09	Low weight
$Mo_2O_5S(I)$	-894.66	-927.29	3.52	
Mo_2O_5S (II)	-894.51	-933.49	4.18	
Mo ₃ O ₉	-1426.47	-1506.24	5.30	
$Mo_3O_8S(I)$	-1372.46	-1451.26	5.43	JL
Mo_3O_8S (II)	-1380.86	-1459.14	5.36	
Mo_3S_4	-646.38	-611.83	5.65	

Non-periodic clusters' bond dissociation energies

Non-periodic clusters' angle distortion energies

• Equations of state for MoO₃/MoS₂ crystal structures

Cohesive energies (per atom)	ReaxFF (kcal/mol)	DFT (kcal/mol)	
a-MoO3	-128.15	-124.12	
2H-MoS ₂	-117.67	-123.36	
3R-MoS ₂	-117.65	-123.35	
1T-MoS ₂	-116.92	-119.14	

7

Results: the ReaxFF force field optimization

Methods

Spin polarized DFT

0.22

-1.07

• **ReaxFF reactive force field validation**

We need a ReaxFF reactive force field for CVD chemistry

□ Reaction profiles for S₂ adsorption on an O-vacancy MoO₃ surface calculated by DFT-nudged elastic band (NEB) methods

DFT + U

0.38

-0.80

ReaxFF-NEB

Reaction barrier (eV)

Reaction energy (eV)

DFT

0.20

-1.43

Our ReaxFF force field can reasonably describe interactions between S₂ **gas and MoO**₃ **surface**

Spin polarized DFT + U

0.52

-0.59

