Molecular Dynamics Simulation of MoS₂ Exfoliation with Water/Iso-proponal

Ken-ichi Nomura

Collaboratory for Advanced Computing and Simulations University of Southern California

MAGICS Workshop, March 4, 2018

Simulation Outline

- 1) Create and relax the mixture (Water/IPA) and MoS₂ separately
- 2) Combine them together and relax
- **3) Create bubbles and apply shock**
- 4) Analysis

Water/IPA mixture

Water: TIP4P/2005

3 atoms, 2 types of atoms2 bonds, 1 type of bond1 angle, 1 type of angle

IPA: OPLS-AA

12 atoms,	5 types of atoms
11 bonds,	5 types of bond
19 angles,	7 types of angles
21 dihedrals,	5 types of dihedrals

• Create the mixture system with no overlapped molecules, and shrink the system to normal density

Atom read format

Atoms #	full					
1 2 3 4 5	1 1 2 2	1 2 2 3 7	0.00 0.00 0.00 0.00 0.00	1.550 1.550 1.550 6.033 6.665	1.550 2.307 0.793 2.429 1.124	1.500 2.086 2.086 1.580 1.090
Bonds 1 1 1 2 2 1 1 3 3 2 4 8 4 2 4 9			Angles 1 1 2 1 3 2 2 5 7 15 3 3 4 5 7 4 3 6 5 7		Dihedrals 1 1 4 5 7 2 1 6 5 7 3 2 11 5 4 3 7 5 4	15 15 7 15 8

• Relax the mixture to normal density using NPT ensemble

1	units real
2	atom_style full
3	boundary p p Define the DOX
4	processors * * *
5	region mybox block 0.0 100.0 0.0 100.0 0.0 100.0 units box
6	create_box 9 mybox bond/types 6 angle/types 8 dihedral/types 5 &
7	<pre>improper/types 0 extra/bond/per/atom 4 &</pre>
8	extra/angle/per/atom 13 extra/dihedral/per/atom 21
9	read_data ./data.solvent
10	include system.ff Force Field
11	include system.in.charges
12	fix constrain all shake 1.0e-4 100 0 b 10 a 23

Create MoS₂

- Create MoS2 crystal
- Introduce vacuum
- Apply conjugate gradient to relax the system
- Heat the system to desired temperature and thermalize the system

MoS₂ Crystal

Create MoS₂

Define the crystal unit cell

12	lattice custom 1.0 &		
13	orient x 1 0 0 &		
14	orient y 0 0 -1 &		
15	orient z 0 1 0 &		
16	a1 3.17 0.0 0.0 &		
17	a2 0.0 5.490601 0.0 &		
18	a3 0.0 0.0 12.288 &		
19	basis 0.00000 0.00000	0.25000	δ
20	basis 0.50000 0.50000	0.25000	δ
21	basis 0.50000 0.16670	0.75000	8
22	basis 0.00000 0.66670	0.75000	δ
23	basis 0.00000 0.00000	0.62750	8
24	basis 0.50000 0.50000	0.62750	8
25	basis 0.50000 0.16670	0.37250	8
26	basis 0.00000 0.66670	0.37250	δ
27	basis 0.50000 0.16670	0.12750	δ
28	basis 0.00000 0.66670	0.12750	δ
29	basis 0.00000 0.00000	0.87250	8
30	basis 0.50000 0.50000	0.87250	

Create MoS₂

48	create_atoms 9 box &
49	basis 1 8 &
50	basis 2 8 &
51	basis 3 8 &
52	basis 4 8 &
53	basis 5 9 &
54	basis 6 9 &
55	basis 7 9 &
56	basis 8 9 &
57	basis 9 9 &
58	basis 10 9 &
59	basis 11 9 &
60	basis 12 9

Create MoS₂

62	variable x1 equal xlo-10.0
63	variable x2 equal xhi+10.0
64	variable y1 equal ylo-10.0
65	variable y2 equal yhi+10.0
66	variable z1 equal zlo-10.0 Introduce Vacuum
67	variable z2 equal zhi+10.0
68	
69	<pre>change_box all x final \${x1} \${x2} y final \${y1} \${y2} z final \${z1} \${z2} units box</pre>

```
Conjugate Gradient to relax the system
    thermo_style one
77
78
    min_style cg
    thermo 2
79
    minimize 1.0e-4 1.0e-6 1000 1000
80
81
    reset_timestep 0
82
    velocity
                    all create 10.0 156467 mom yes rot yes dist gaussian
83
    #dump dfiles all custom 1000 MoS2.lammpstrj id type x y z vx vy vz
84
    timestep 1.0
85
86
    fix nvt all nvt temp 10.0 300.0 100.0
87
    run 200000
88
                              NVT ensemble to heat the system up to 300K
    unfix nvt
89
    write_data data.MoS2 nocoeff
90
```

Simulation Outline

- 1) Create and relax the mixture (Water/IPA) and MoS₂ separately
- 2) Combine them together and relax
- 3) Create bubbles and apply shock
- 4) Analysis

Combine mixture and MoS₂

- Combine the two systems together
- Remove overlapping liquid molecules
- Relax and thermalize the combined system

Combine mixture and MoS₂

```
neigh_modify every 8 delay 0 check yes one 5000
30
     read_data ../MoS2/data.MoS2 add append shift 63.5 63.5 50.0
31
32
     reset_timestep 0
33
    set group MoS2 mol 0
34
                                       Remove overlapping
    group solvent type 1 2 3 4 5 6 7
35
    group MoS2 type 8 9
                                       molecules
36
37
38
    delete_atoms overlap 4.0 solvent MoS2 mol yes
    timestep 1.0
39
    neigh_modify every 8 delay 0 check yes one 3000
40
```

51	fix freeze solvent setforce 0.0 0.0 0.0
52	thermo 1 Conjugate Gradient
53	thermo_style one to relay MoS
54	min_style cg
55	minimize 1.0e-2 1.0e-2 10 10
56	unfix freeze
57	reset_timestep 0

Combine mixture and MoS₂

52 53	velocity solvent scale 300.0 velocity MoS2 scale 300.0		
54			
55	compute T s solvent temp Monitor system		
56	fix Temp s solvent ave/time 10 10 100 c T s		
57	compute T mos2 MoS2 temp		
57	fire Tarra MaC2 MaC2 area (time 10 10 100 a T read)		
58	T1X Temp_MOS2 MOS2 ave/t1me 10 10 100 c_T_mos2		
59			
60	thermo_style custom step temp f_Temp_s f_Temp_MoS2 pe etotal press pxx pyy pzz		
61	thermo_modify flush yes		
62	thermo 100		
63			
64	fix nvt1 solvent nvt temp 300.0 300.0 50.0		
65	fix nvt2 MoS2 nvt temp 300.0 300.0 50.0		
00			
00			

NVT ensemble two thermostats

Create bubble then apply shock

Create bubble then apply shock

```
variable z1 equal 2.0
 9
     variable z2 equal zhi-2.0
10
     region left block INF INF INF INF ${z1} ${z2} units box
11
     group left region left
12
                                       Remove the water/IPA molecules
     group del subtract all left
13
     delete_atoms group del mol yes
                                       crossing periodic boundary in the
14
15
                                       shock direction
     change_box all boundary p p f
16
     kspace_modify slab 3.0
17
     fix ceil all wall/reflect zhi EDGE zlo EDGE
18
```

38 velocity all set NULL NULL \${vs} sum yes units box

30	region bubble sphere \${bx}	\${by} \${bz} 40.0 units box
31	delete_atoms region bubble	mol yes

Create bubble and apply shock

Results: Exfoliation Movie

Analysis

- Local temperature, pressure, shear stress in MoS₂ to find exfoliation mechanism
- Surface area, volume, Convex hull's volume/area to determine exfoliation yield

Bubble Collapse and Nanojet Formation

Local Temperature and Stresses

Exfoliation Yield

Exfoliation : Hands-on

Copy tar ball of the exfoliation hands-on to your staging directory and untar it.

```
$ cp ~magics35/magics/exfoliation.tar.gz .
$ tar xvfz exfoliation.tar.gz
```

It will create **exfoliation** directory that contains three subdirectories (**create**, **bubble_collapse**, **jet**) and custom LAMMPS executable (**lmp_mpi**)

```
$ ls -F exfoliation
bubble_collapse/ create/ jet/ lmp_mpi*
```

Go to exfoliation/jet/ and submit job

\$ cd exfoliation/jet/
\$ qsub job.pbs

Exfoliation : Hands-on

After the job finishes, you will have several LAMMPS trajectory files.

\$ ls data/*.lammpstrj
\$ data/shock.30000.lammpstrj data/shock.30100.lammpstrj

Copy the LAMMPS trajectory files to your laptop and visualize the trajectories using OVITO.

Exfoliation : Hands-on

