Reactive Force Field (ReaxFF) : Its concepts and application

Sungwook Hong and Ken-ichi Nomura

Collaboratory for Advanced Computing & Simulations University of Southern California MAGICS Workshop at USC, March 3, 2018

Outline

- 1. Basic concepts of ReaxFF
 - Multi-scale computational modeling
 - ReaxFF general energy terms
 - Key features of ReaxFF
 - ReaxFF flow diagram
- 2. Application of ReaxFF to complex nanoscale systems
 - Chemical vapor deposition synthesis of MoS₂ layers
- 3. Summary and future work

Outline

- 1. Basic concepts of ReaxFF
 - Multi-scale computational modeling
 - ReaxFF general energy terms
 - Key features of ReaxFF
 - ReaxFF flow diagram
- 2. Application of ReaxFF to complex nanoscale systems
 - Chemical vapor deposition synthesis of MoS₂ layers
- 3. Summary and future work

Multi-scale Computational Modeling

• What is Molecular dynamics (MD) simulation?

Interatomic potential; force field

• ReaxFF general energy terms*

$$E_{system} = E_{bond} + E_{over} + E_{val} + E_{tors} + E_{vdWaals} + E_{Coulomb}$$
Bonded interactions
Non-bonded interactions

 E_{bond} : Bond energy; two-body attractive term E_{over} : Over-coordination energy; penalty for overcoordinating atoms E_{val} : Angle strain energy; three-body term E_{tors} : Torsion energy; four-body term

 $E_{vdWaals}$: van der Waals interactions $E_{Coulomb}$: Coulomb interactions

*van Duin, Adri CT, et al. The Journal of Physical Chemistry A 105 (2001): 9396-9409.

- Key features of ReaxFF 1*
 - A bond order is calculated and updated every step, thus allowing for chemical reactions during MD simulations.

*Russo, Michael F., and Adri CT van Duin. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* **269** (2011): 1549-1554.

- Key features of ReaxFF 2*
 - All bonded-interactions are made of bond-order dependent.

$$E_{bond} = -D_e^{\sigma} \cdot BO_{ij}^{\sigma} \cdot f(BO_{ij}^{\sigma}) - D_e^{\pi} \cdot BO_{ij}^{\pi} - D_e^{\pi\pi} \cdot BO_{ij}^{\pi\pi}$$

*Russo, Michael F., and van Duin, Adri. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms **269** (2011): 1549-1554.

Key features of ReaxFF – 3^{*}

- Non-bonded interactions (van der Waals and Coulomb) are calculated between every atom pair. (*i.e.*, no exception)
- ReaxFF employs the QEq method,** a geometry-dependent point charge calculations scheme, to update point charges for the entire system.

*Russo, Michael F., and Adri CT van Duin. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* **269** (2011): 1549-1554.

**Rappe, Anthony K., and William A. Goddard III. The Journal of Physical Chemistry 95 (1991): 3358-3363.

ReaxFF flow diagram*

*Senftle, Thomas, et al. npj Computational Materials 2 (2016).

- How to get ReaxFF reactive force field parameters?
 - Do search Google Scholar: <u>https://scholar.google.com/</u>
 - Develop your ReaxFF force field parameters (non-trivial)

A Step for the force field training

^{*} van Duin, A. C. T.; Jan, M.; de Graaf, B. J. Chem. Soc., Faraday Trans. 1994, 90, (19), 2881-2895.

Outline

- 1. Basic concepts of ReaxFF
 - Multi-scale computational modeling
 - ReaxFF general energy terms
 - Key features of ReaxFF
 - ReaxFF flow diagram

2. Application of ReaxFF to complex nanoscale systems

- Chemical vapor deposition synthesis of MoS₂ layers
- 3. Summary and future work

I. Background/motivation

Computational synthesis of layered materials

Develop a ReaxFF reactive force field for Mo/O/S systems to gain atomistic-scale insights into the sulfidation of MoO₃ surfaces.

[1] Gupta, Ankur, Tamilselvan Sakthivel, and Sudipta Seal. "Recent development in 2D materials beyond graphene." *Progress in Materials Science* 73 (2015): 44-126.
 [2] Lee, Yi-Hsien, et al. "Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition." *Advanced Materials* 24.17 (2012): 2320-2325.
 [3] Taheri, Payam, et al. "Growth mechanism of largescale MoS2 monolayer by sulfurization of MoO3 film." *Materials Research Express* 3.7 (2016): 075009.

II. Methods

• How do we develop ReaxFF reactive force field parameters?

□ Atomic charges

□ Angle distortion energy

General Security of Contract Security of Contract

□ Equations of state for crystal systems

• **Step 1. O₂ evolution from a MoO₃ surface**

> At elevated temperatures (T > 1300 K), a MoO₃ surface is self-reduced by O₂ evolution.

□ Reaction mechanism of the O₂ evolution at high temperatures by RMD simulations

* Surface species

: At high temperatures, a MoO_3 surface undergoes self-reduction by disordered O-termination sites, leading to Mo-dangling bonds.

• **Step 2.** SO/SO₂ formation from a MoO_{2.6} surface

RMD simulation of CVD synthesis of MoS₂ layers (up to 1.2 ns)

- A MoO_{2.6} surface, reduced by the previous step, is exposed to S₂ gas molecules for CVD simulations
- MoO_{2.60} surface was further reduced and partially sulfurized by forming SO and SO₂ products.

Reaction mechanisms of the SO/SO₂ formation by RMD simulations

• Step 3. Mo-S bond formation on MoO_xS_v

- > Surface defect was generated because of O removals and follow-up Mo redistribution.
- Mo/S configurations at 7.2 ns are qualitatively consistent with a portion of MoS₂ structures (Mo-S termination, Mo-S-Mo bridge, and MoS₂ edge)

Outline

- 1. Basic concepts of ReaxFF
 - Multi-scale computational modeling
 - ReaxFF general energy terms
 - Key features of ReaxFF
 - ReaxFF flow diagram
- 2. Application of ReaxFF to complex nanoscale systems
 - Chemical vapor deposition synthesis of MoS₂ layers
- 3. Summary and future work

3. Summary and future plan

- RMD simulations coupled with ReaxFF enable us to study physical and chemical properties of complex nanoscale system.
- Large-scale and long-time RMD simulations will be performed to investigate:
 - **1.** Further growth of MoS₂-like structures
 - 2. Healing of surface defects for further introduction of sulfur precursor

Funding:

