Shock Simulations

Pankaj Rajak

> Shock simulation setup in water

> Analysis of the simulation result

Step 1a: Create water system and define force field

Step 1b: Create water system and define force field

pair_style lj/cut/tip4p/long 2 1 1 1 0.1546 8.50 kspace_style pppm/tip4p 1.0e-5

Step 2: Heat the system to 300K in NVT

2a. Initialize velocities of atoms at 10K2b. Heat to 300K and 1 atm in NPT

Velocity	all create 10.00 156 mom yes rot yes dist gaussian
fix	1 all npt temp \$T₁ \$T₂ 100.0 iso \$P₁ \$P₂ 1000
timestep	2.0 fs
run	50000

Step 2: Heat the system to 300K in NVT

2a. Initialize velocities of atoms at 10K2b. Heat to 300K using Nose-Hoover thermostat

all create 10.00 156 mom yes rot yes dist gaussian Velocity 1 all npt temp \$T₁ \$T₂ 100.0 iso \$P₁ \$P₂ 1000 fix 300 2.0 fs timestep 50000 run 250 200 emperature (K 150 **Temperature profile** during heating 100 50 2.5 10⁵ 5 10⁴ .5 10⁵ 2 10⁵

Step 3: Relax the system in NVE

Relax the system so that temperature and energy becomes constant

fix	1 all nve
timestep	2.0fs
run	50000

Step 3: Relax the system in NVE

Relax the system so that temperature and energy becomes constant

Step 4: Shock Simulation Setup

Remove periodic boundary condition from z direction Put momentum mirror at Z= 0Å

Step 4: Shock Simulation Setup

change_boxall boundary p p sfixwallr all wall/reflect zhi EDGE units box

Step 5: Shock Simulation in water

Give all atoms 1 km/sec velocity along +Z direction

velocity all set NULL NULL 1Km/sec

Step 5: Shock Simulation in water

Reduce time-step to 0.1fs and run under NVE for 60000 steps

timestep0.1fsrun10000

Step 6: Shock Simulation in water

Shock Simulation Hands-on:

Copy the shock simulation hands-on to your staging directory. cp -r ~magics35/magics/shock-demo.tar.gz . tar xvfz shock-demo.tar.gz

cd shock-demo

ls

a.out calTemp_F.f90 Density.txt

dumpshock.nve forcefield.tip4p in.shock job.pbs log.lammps relax temp.atoms
water.restart

Shock Simulation Hands-on:

File description: in.waterrelax (in relax folder) : creates a relaxed configuration in.shock : does shock simulation and takes input.restart as input data which is generated by in.relax

Note: water.restart is already generated for you by running in.waterrelax from relax folder

Step 7: Temperature profile

Computational Challenges in Shock Simulation

Issue 1: Most interaction potential are fitted for low temperature and pressure Example : SB potential for RDX is attractive at very small interatomic distance

Solution: Add repulsive wall in interaction potential at small distance

Computational Challenges in Shock Simulation

Issue 2: Due to the change in density of atoms inside simulation box during simulation, you simulation will speed will slow down

Solution: Dynamic Load balancing