

GACE MAGICS Workshop Thermal Conductivity Hands-On Session

Thermal Conductivity Plugins for LAMMPS used in this research was produced by USC MAGICS Center that is a part of the Computational Materials Sciences Program funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award Number DE-SC00014607.

The goal of this session is to calculate DOS, C_v and thermal conductivity of 2-D materials with quantum correction

Configuring the Jupyter Notebook

- **For our hands on session we will be using Jupyter Notebook.**
- The advantage of doing this is that it lets us run jobs on the USC HPC cluster directly from our web browsers.
- > Let us take a look at how we configure the Jupyter notebook.
- People with MacBooks can directly run it from the Terminal, however for people using windows we will be running it through PUTTY

People with MacBooks, open terminal and type:

ssh -L localhost:89XX:localhost:89XX magicsXX@hpc-login3.usc.edu

Replace XX with last two digits of your MAGICS Account

Enter your Password and you should be able to log into HPC.

Local Area Network (LAN) Settings ×	
Automatic configuration Automatic configuration may override manual settings. To ensure the use of manual settings, disable automatic configuration. Automatically detect settings Use automatic configuration script Address roxy server Use a proxy server for your LAN (These settings will not apply to dial-up or VPN connections). Address: Port: Advanced Bypass proxy server for local addresses	🖹 Local Area Network (LAN) Settings 🛛 🕹 👋
 Proxy server Use a proxy server for your LAN (These settings will not apply to dial-up or VPN connections). Address: Port: Advanced Bypass proxy server for local addresses 	Automatic configuration Automatic configuration may override manual settings. To ensure the use of manual settings, disable automatic configuration. Automatically detect settings Use automatic configuration script Address
Address: Port: Advanced Bypass proxy server for local addresses	Proxy server Use a proxy server for your LAN (These settings will not apply to dial-up or VPN connections)
Bypass proxy server for local addresses	Address: Port: Advanced
	Bypass proxy server for local addresses

Conternet Properties ? ×		
Cocal Area Network (LAN) Settings	Proxy Settings ×	
Automatic configuration Automatic configuration may override manual settings. To ensure the use of manual settings, disable automatic configuration. Automatically detect settings Use automatic configuration script Address Proxy server Use a proxy server for your LAN (These settings will not apply to dial-up or VPN connections).	Servers Type Proxy address to use Port HTTP:	Replace 88XX with the last two digits of your MAGICS account
Address: Port: Advanced Bypass proxy server for local addresses OK Cancel	Exceptions Do not use proxy server for addresses beginning with:	Enter 127.0.0.1 In the socks tab
Local Area Network (LAN) settings		
LAN Settings do not apply to dial-up connections. Choose Settings above for dial-up settings.	Use semicolons (;) to separate entries.	→ Hit OK
OK Cancel Apply		

Strate PuTTY Configuration		? ×	
Category:			
Session	Basic options for your PuTTY se	ession	
- Logging ⊖ Terminal	Specify the destination you want to connect	tto	Make sure to enter the
-Keyboard	Host <u>N</u> ame (or IP address)	Port	Make sure to enter the
Bell	hpc-login3.usc.edu	22	hostname as shown with the
 Features ⇒ Window Appearance 	Connection type: ○ Raw ○ Ielnet ○ Rlogin ● SS	H O Serial	correct Port value
-Behaviour -Translation -Selection -Colours	Load, save or delete a stored session Saved Sessions		
Connection - Data - Proxy	Default Settings HPC	Load	
- Telnet		Sa⊻e	Click on the plus sign
-Riogin ⊞ SSH - Serial		Delete	next to SSH
	Close window on exit: Always Never Only on a	clean exit	
<u>A</u> bout <u>H</u> e	p <u>O</u> pen	<u>C</u> ancel	

PuTTY Configuration			? ×	
ategory:				
Terminal ^	Option	is controlling SSH p	ort forwarding	Maka suna ta naplasa)
Keyboard	Port forwarding			wake sure to replace A
Bell			for any other and a set	with the last two digits
- Features		ccept connections i	rom other nosts	
Appearance	Remote ports	s do the same (SSH	I-2 only)	your MAGICS Account.
Behaviour	Forwarded port	S:	Remove	
Translation				Example : If you re
Selection				magics 32 enter 8932
Colours				
Connection				
Data	Add new forwar	rded port:		
Proxy	Source port	89XX		
	Source Doil	00/01	Add	_
Telnet				
- Telnet - Rlogin	Destination	hpc-login3.usc.	edu:89XX	Do the same here.
- Telnet - Rlogin ⊟ SSH	Destination	hpc-login3.usc	.edu:89XX	Do the same here.
- Telnet - Rlogin ⊟ SSH - Kex	Destination	hpc-login3.usc.	edu:89X	Do the same here. Replace XX with last
- Telnet - Rlogin ⊖ SSH - Kex - Host keys	Destination CLocal Auto	hpc-login3.usc Remote IPv4	edu:89XX Dynamic IPv6	Do the same here. Replace XX with last two digits of you
- Telnet - Rlogin B SSH - Kex - Host keys - Cipher	Destination O Local (a) Auto	hpc-login3.usc Remote IPv4	edu:89X Dynamic IPv6	Do the same here. Replace XX with last two digits of you MAGICS account
- Telnet - Rlogin - SSH - Kex - Host keys - Cipher - Auth TTY	Destination O Local (i) Auto	hpc-login3.usc Remote IPv4	edu:89X Oynamic IPv6	Do the same here. Replace XX with last two digits of you MAGICS account
 Telnet Rlogin SSH Kex Host keys Cipher Auth TTY X11 	Destination O Local (a) Auto	hpc-login3.usc O Remote O IPv4	edu:89X	Do the same here. Replace XX with last two digits of you MAGICS account
 Telnet Rlogin SSH Kex Host keys Cipher Auth TTY X11 Tunnels 	Destination C Local Auto	hpc-login3.usc Remote IPv4	edu:89X	Do the same here. Replace XX with last two digits of you MAGICS account
 Telnet Rlogin SSH Kex Host keys Cipher Auth TTY X11 Tunnels Bugs 	Destination O Local (a) Auto	hpc-login3.usc Remote IPv4	edu:89XX ● Dynamic ○ IPv6	Do the same here. Replace XX with last two digits of you MAGICS account

PuTTY Configuration			? ×	Once you've replaced
Category:				
Terminal	Option	ns controlling SSH p	port forwarding	XX with the last two
-Keyboard -Bell	Port forwarding			digits of your MAGICS
Features	Local ports a	ccept connections	from other hosts	account Click ADD
Window	Remote port	s do the same (SSI	H-2 only)	
- Appearance - Behaviour	Forwarded por	s:	Remove	
Translation	D89XX			
Selection				
Colours				
Connection		de de cet		
Data	Add new forwa	raea port:		Once you click Add
Tologt	Source port	89XX	Add	should be able to
Plogin				Siloulu be able to
Riogin ⊐ SSH	Destination	hpc-login3.usc	c.edu:89XX	your port appear
-Kex		Remote	Dynamic	
Host kevs	Auto			
Cipher	CAdo	01114		
Auth				
TTY				
-X11				
Tunnels				
Bugs				
More bugs				
About Help)	Oper	n Cancel	

Setting up the Jupyter Notebook

Once you log on to HPC navigate to the staging directory like so

cd /staging/magics18/magicsXX/Day1_Handson

Make sure to change XX to your MAGICS account number

Start a Python jupyter Notebook with the following command

jupyter notebook --no-browser --port=89XX

Make sure to replace XX with your MAGICS account number

Copy and Paste the link that the terminal throws up on to your browser.

Outline

Thermal conductivity calculation in MoS₂
 Length scaling
 Temperature scaling

> PDOS, DOS and C_v calculation

> Quantum correction for thermal conductivity

Software Download

LAMMPS Plugins for Thermal Conductivity Calculation

https://magics.usc.edu/thermal-conductivity-plugin/

Thermal Conductivity Plugins for LAMMPS

- Thermal conductivity with isotopes and quantum correction
- Velocity autocorrelation and Phonon Density of States using multiple initial conditions
- Specific heat from Phonon DOS as a function of temperature

Thermal conductivity tools is a series of plugins for thermal properties — velocity autocorrelation functions, phonon density of states, specific heat and thermal conductivity from MD using LAMMPS.

LAMMPS Plugins for Thermal Conductivity

Contents of your Home Directory

LAMMPS Plugins for Thermal Conductivity

Each sub directory of Length_Scaling and Temperature_Scaling following files

- **1.** in.relax: LAMMPS script to create a relaxed system at a given Temperature
- 2. in.heatflux: LAMMPS script to for thermal conductivity calculation
- 3. in.variables: Variable definitions that are used in the LAMMPS Script
- 4. MoS₂.data: Input unit cell coordinate of MOS₂ monolayer
- 5. MoS₂.sw: SW Interaction potential for MOS₂
- 6. MoS₂.restart: *Restart file to be used by LAMMPS*.
- 7. job.pbs: *PBS file used to submit jobs to the HPC*
- 8. calthermal_conductivity.py: *Python code to post-process LAMMPS data to compute thermal conductivity value*
- 9. input.txt: Input parameters for calthermal_conductivity.py

First Set of Job Submissions

First Set of Job Submissions (Contd.)

Steps for Thermal Conductivity Calculation

LAMMPS Walkthrough: Simulation Units

Units used in LAMMPS here for Molecular dynamics Simulation – Metal. Example : 1 Femtosecond as timestep = 0.001 (in LAMMPS Metal unit)

Parameter	Units
Distance	Angstroms (Å)
Time	Picoseconds (ps)
Energy	Electron Volts (eV)
Temperature	Kelvin (K)

Step 1: Create a relaxed system

Input script: *in.relax* units metal 1. Create a system atom style atomic 2. Do energy minimization boundary ррр processors ${px} {px} {pz}$ Input Crystal structure read data MoS2.data replicate **\${xnum} \${ynum} \${znum}** watom type 1 group seatom type 2 group neighbor 2.0 bin neigh modify delay 0 every 1 check yes pair style SW *Interaction potential* pair coeff * * MoS2.sw Mo S thermo style custom step temp pe ke etotal press vol thermo 50 dump 1 all atom 100 dump.min **Energy minimization** min style cq minimize 1.0e-8 1.0e-8 5000 10000

Step 1: Create a relaxed system

Input script: *in.relax*

- 3. Heat to temperature T
- 4. Relax to temperature T

velocity fix run	all create \${SysTemp100} 156467 mom yes rot yes dist gaussian 2a all nve \${Steps40ps}
fix dump run unfix write restart	<pre>5 all nve 4 all atom 50000 dump300.nve Relax at T \${Steps600ps} 5 Input file for in.heatflux</pre>
	for thermal conductivity

LAMMPS Walkthrough: Variables

File: *in.variables*

- Contains variable definitions
- Here are some of the important ones

variable px equal 20 # Number of processors in the x direction variable py equal 4 # Number of processors in the y direction variable pz equal 1 # Number of processors in the z direction variable SimTimestep equal 0.001 # Timestep used. Here 1 femtosecond variable Steps300K equal 300000 # Number of steps to run. Here 300000 variable HeatAdded equal 0.00431*100 # Amount of heat added. 0.431eV variable HeatRemoved equal -0.00431*100 # Amount of heat removed 0.431eV

Schematic of Thermal Conductivity Simulation Setup

- Define Hot and Cold region in the system at X=L/4 and X=3L/4 respectively
- $> E_0$ heat is given to the hot region and E_0 heat is taken away from cold region.

Equations to Compute K

- > Temperature gradient($\frac{dT}{dx}$) is calculated from the temperature vs distance plot.
- Thermal conductivity (K) is calculated using these formula

Heat Flux:
$$J_y = -\frac{1}{2} \frac{E_0}{A \times \Delta t}$$

$$V_y = -\frac{K}{dx} \frac{dT}{dx}$$

A= Cross-sectional area of MoS_2 E₀= Input Heat/ Heat taken out from the system Δt =time interval between consecutive E₀

Step 2: Add/Remove heat to/from system

Read relaxed structure coordinate

boundary	ррр
processors	\${px} \${py} \${pz}
read_restart	MoS2.restart
neighbor	2.0 bin

Input script: *in.heatflux*

- 1. Read relaxed structure coordinate
- 2. Define two strips L/2Å apart
- 3. Add/remove heat from these strip
- 4. Run system for 4ns
- 5. Take temperature average over 4ns
- 6. Continue this process at least thrice

Define strips and add/remove heat from these regions

region	hot block 240 260 INF INF INF Units box
region	cold block 740 760 INF INF INF INF units box
group	hot region hot
group	cold region cold
fix	<pre>1 hot heat 100 \${HeatAdded} region hot</pre>
fix	<pre>2 cold heat 100 \${HeatRemoved} region cold</pre>

Step 2: Add/Remove heat to/from system

Input script: *in.heatflux*

- 1. Read relaxed structure coordinate
- 2. Define two strips L/2Å apart
- 3. Add/remove heat from these strip
- 4. Run system for 4ns
- 5. Take temperature average over 4ns
- 6. Continue this process for at least 3 time

Take Temperature average for 4ns

compute	myKE all ke/atom
variable	atemp atom c_myKE/(1.5*8.621738*0.00001)
timestep	<pre>\${SimTimestep}</pre>
fix	6b all ave/spatial 1 \${T_avg4ns} \${T_avg4ns} x lower
	20.0 v_atemp file Temperature.txt units box
run	\${T_avg4ns}

Hands on Calculations

Already Submitted Earlier

Length Scaling:

- 1. Pre-relaxed system at 300K for 12ns is inside L_scaling folder:
 - a) 600Å×100Å : MOS2_600L.restart
 - b) 800Å×100Å: MOS2_800L.restart
 - c) 1000Å×100Å: MOS2_1000L.restart
- 2. Run in.heatflux for 300000 steps
- 4. Compute thermal conductivity using calthermal_conductivity.py

Check Status of your jobs

Job Submission: Job 3 (Length Scaling)

Job Submission: JOB1 (Temperature Scaling)

Hands on Calculations

Temperature Scaling:

1. Pre-relaxed system at 100K, 200K, 300K for 12ns is inside T-scaling folder:

Already Submitted Earlier

- a) 800Å×100Å, 200K : MOS2_200T.restart
- b) 800Å×100Å, 100K : MOS2_100T.restart
- c) 800Å×100Å, 300K : MOS2_200T.restart
- 2. Run in.heatflux for 300,000
- 3. Compute thermal conductivity using calthermal_conductivity.py

Step 3: Compute Thermal Conductivity

Compute thermal conductivity using *calthermal_conductivity.py*

Input parameters for calthermal_conductivity.py is defined in input.txt

height	3.5	<pre># height of your system. # This value can be seen from lammps dump file</pre>
width	197.45	# width of your system.
		<pre># This value can be seen from lammps dump file</pre>
energy	0.2586	<pre># energy input into the system in ev/ps.</pre>
		<pre># Should be equal to eheat/rheat of in.heatflux file</pre>
frequency	1000	<pre># how frequently heat is supplied/extracted from system.</pre>
		#Should be equal to value of fix hot/cold in.heatflux file
dtstep	0.001	<pre># time step used in your md simulation in ps</pre>

Note: you can find these parameters in in.heatflux and lammps dump file

Sourcing Python

Before we start plotting anything we must source python. Follow these steps

Step 3: Compute Thermal Conductivity

Compute thermal conductivity using *calthermal_conductivity.py*

python3.5 calthermal_conductivity.py Temperature.txt

Step 3: Compute Thermal Conductivity (4ns data)

Compute thermal conductivity using *calthermal_conductivity.py*

python3.5 calthermal_conductivity_4ns.py 20Temperature4.txt

File: 20Temperature4.txt

- 1. Contains Temperature profile averaged over 4ns
- 2. Much Less Noise

Output : Length: 39.99 1/Length 0.025 Mean Thermal Conductivity value and standard deviation 18.61 0.00 1/(Thermal_Conductivty) value and standard deviation 0.054 0.00

Job Submission: JOB 2 Temperature Scaling

Job Submissions : Isotope (JOB 1)

Step 4: Plot Length scaling

For 600Å×100Å, 800Å×100Å, 1000Å×100Å compute K value and plot K⁻¹ vs L⁻¹

2. Extremely noisy temperature gradient

Step 4: Plot Length scaling (4ns System)

For 600Å×100Å, 800Å×100Å, 1000Å×100Å *compute K* value and plot K⁻¹ vs L⁻¹ using 20Temperature4.txt

Note: Temperature profiles have been averaged over 4 ns instead of 0.3ns (300Ksteps)

Step 4: Plot Length scaling (4ns System)

To Plot Length Scaling we have provided you with a GNUPLOT script inside the Length_Scaling folder

Step 5: Plot Temperature scaling

For 800Å×100Å at temperature 100K, 200K and 300K *compute K value and plot K vs T*

Note: For 800Å×100Å at 300K use the Thermal conductivity value from the Length Scaling System

To Plot Temperature Scaling we have provided you with a GNUPLOT script inside the Temperature_Scaling folder

PDOS, DOS and C_v Calculation

Software Download

LAMMPS Plugins for Thermal Conductivity Calculation

https://magics.usc.edu/thermal-conductivity-plugin/

Thermal Conductivity Plugins for LAMMPS

- Thermal conductivity with isotopes and quantum correction
- Velocity autocorrelation and Phonon Density of States using multiple initial conditions
- Specific heat from Phonon DOS as a function of temperature

Thermal conductivity tools is a series of plugins for thermal properties — velocity autocorrelation functions, phonon density of states, specific heat and thermal conductivity from MD using LAMMPS.

LAMMPS Plugins for Thermal Conductivity

DOS_Cv: Contains following files

- **1. in.dos:** *LAMMPS script to create a relaxed system at Temperature=T K*
- 2. MOS₂.data: Input unit cell coordinate of MOS₂ monolayer
- **3.** MoS₂.sw: SW Interaction potential for MOS₂
- 4. caldos.py: Python script to run dos.c and save images of of velocity autocorrelation, PDOS, FDOS, C_v in the folder image.
- dos.c: C program to compute velocity autocorrelation, PDOS, TDOS, C_v from LAMMPS dump file
- 6. dos.h: header file for dos.c
- 7. input.txt: contains input parameters for DOS calculation , used by dos.c

Major steps involved in calculating DOS

Step 1: Create a relaxed system

	Input script: in.dos
	1. Create a system
	2. Do energy minimization
	3. Heat and relax to temperature T
	4. Save coordinates for analysis
reset_timestep	0
fix	5 all nve
fix	6a all momentum 1000 linear 1 1 1
dump	3 all custom 1000 dump100relax.nve id type x y z vx vy
variable	tt0 equal step
run	200000
undump	3
unfix	6a
<pre>#save coordinat</pre>	es of thermalized system for analysis
dump	4 all custom 10 dumpdos.nve id type x y z vx vy vz
dump_modify	4 sort id
run	10500
unfix	5 Used to calculate Velocity autocorrols
write restart	mos2.restart PDOS, DOS and Cv by caldos.py

Hands on Calculations

Compute Velocity autocorrelation, Density of states using LAMMPS dump file

Compute Velocity autocorrection (Z_α) for Mo & using 50 initial condition
 Partial Density of State:

$$G_{\alpha}(\omega) = \frac{6N_{\alpha}}{\pi} \int_{0}^{\infty} Z_{\alpha}(t) \cos(\omega t) dt$$

Total Density of State :

$$G(\boldsymbol{\omega}) = \sum_{\boldsymbol{\alpha}} G_{\boldsymbol{\alpha}}(\boldsymbol{\omega})$$

Hands on Calculations

Velocity autocorrelation, Density of states, C_v calculation:

- 1. Dump file for a relaxed system is inside DOS_cv_plugins folder:
 - > dumpdos.nve
- 2. Compute velocity autocorrelation, density of states and $\,C_{\rm v}$

python3.5 caldos.py dumpdos.nve

Note: caldos.dy run a C program called dos.c which does this calculations. dos.h is header file for dos.c(no need to edit this file).Various parameters required for the calculation is defined inside input.txt file(you will need to change parameters here).

Output : images and values of DOS, Velocity autocorrelations of each element and Specific Heat.

Input parameter file: input.txt

Ninitial		10	<pre>#Total number of initial condition</pre>
Corlength		7000	#Correlation length for each initial condition
Ngap	100	#Gap bet	tween two initial condition
TFREQ	10	#Timeste	ep between two consecutive saved frame
dT	0.001	#timeste	ep in ps
massW	95.940	#mass of	f atom type 1
massSe	32.065	#mass of	f atom type 2

from in.dos file:

<pre>#save coordinate</pre>	es of thermalized	l system for	analysis		
dump	4 all custom 10	dumpdos.nve	id type x y	z vx	(vy vz
dump_modify	4 sort id				
run	10500	TFREQ	in input.txt		
unfix	5 NE	RAME			
write restart	mos2.restart				

Note: $Ninitial \times Ngap$ + Corlength $\leq NFRAME$

If this condition is not satisfied you will get error message

Hands on Calculations

1. Calculate Velocity autocorrelations, PDOS,DOS and C_v with one initial condition (Ninitial =1) and with 10 initial condition (Ninitial =10)

2. Compare the results

Quantum Corrected Thermal Conductivity

$$\frac{C_{v}}{3Nk_{b}} = \frac{\int_{0}^{\infty} \frac{u^{2}e^{u}}{(e^{u}-1)^{2}} G(\omega) d\omega}{\int_{0}^{\infty} G(\omega) d\omega}, u = \frac{\hbar\omega}{k_{B}t}$$

$$\mathbf{K}_{\mathbf{corrected}} = \left(\frac{C_{v}}{3Nk_{b}}\right) \times \mathbf{K}_{\mathbf{MD}}$$

Hands-on Calculation:

- Take the value of C_v at 100K,200K and 300K from *Specific_heat.txt* file
- 2. Take the value of K computed at 100K, 200K and 300K for 800Å×100Å system
- **3. Multiply these two number to get quantum corrected K value**

Quantum Corrected Thermal Conductivity

Hands-on Calculation:

- 1. Take the value of C_v at 100K,200K and 300K from *Specific_heat.txt* file
- 2. Take the value of K computed at 100K, 200K and 300K for 800Å×100Å system
- **3.** Multiply these two number to get quantum corrected K value
- 4. To plot Thermal Conductivity with Quantum Corrections we have provided you with a folder named Quantum_corrected_TC.
- 5. Inside this folder you will find a gnuplot script file that will plot out the values.
- 6. To run type: gnuplot sket.ch
- 7. This outputs a file Quantum_correction_TC.png Transfer to view it in your machine

Hands on Calculations : Isotope Effect

Compute thermal conductivity value of 800Å×100Å at 100K with isotopes

python2.7 calthermal_conductivity.py Temperature.txt

Compare the thermal conductivity value of 800Å×100Å at 100K with and without isotopes

Stuff to keep in mind - 1

Average temperature over longer time

800

900

Stuffs to keep in mind - 2

Heating rate is important : Very high heating rate can give anomalous result

