Kirigami and Origami Simulations of 2D Materials

Ben Wang, Huan Zhao, Han Wang, Rajiv Kalia, Aiichiro Nakano, Priya Vashishta

Collaboratory for Advanced Computing and Simulations University of Southern California

MAGICS 3rd Workshop, Washington D.C. Nov. 13, 2018

Materials software (Thermal Conductivity Plugins for LAMMPS, RXMD, QXMD, GEARS) used in this research was produced by USC MAGICS Center that is a part of the Computational Materials Sciences Program funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award Number DE-SC0014607

Introduction

- Origami: a creative art of paper folding, making 3D structures out of 2D sheets.
- **Kirigami:** a creative art of paper cutting and folding.
- Two simulations:
 - Nanoindentation on kirigami MoS₂
 - Origami of graphene under water flow
- Our goal is to: showcase mechanical properties of kirigami MoS₂, and demonstrate a new technique to fold graphene.

Blees, M. K. *et al*. Graphene kirigami. *Nature* **524**, 204 – 207 (2015)

Kirigami Simulation Setup

- $100 \times 100 \text{ nm}^2 \text{ MoS}_2 \text{ monolayer}$
- Black region: removed Mo and S atoms
- Conical indenter is applied in the middle from above (see video in next slides)

Visualization of nanoindentation: part 1

Visualization of nanoindentation: part 2

- Spring constant:
 - Hexagonal pattern: 0.2 N/m
 - Square pattern: 0.1 N/m
 - Normal: 5.0 N/m
- Kirigami pattern makes materials more "elastic"
- "out-of-plane rigidity" is reduced 20~50 times by introducing kirigami pattern

Graphene folding under water flow

- Two dimensional (2D) materials have exceptional mechanical flexibility, can be stretched and folded into origami structures.
- 2 common folding methods:
 - Thermoresponsive folding
 - Mechanical folding
- Our goal is to demonstrate a different technique to fold graphene in water

Huan Zhao, Han Wang et al WangLab@USC

Office of Science

Folding Simulation Setup

- Box size: $24 \times 24 \times 12 \text{ nm}^3$
- Box is full of H₂O, graphene sheet is in the middle (only half of H₂O is shown)
- As the arrow indicates, we push water with a constant pressure P = 0.16 GPa to simulate water flow

- Top view of graphene
- graphene size: 20 nm
- Left part: we fix it in space with harmonic force to simulate substrate adhesion
- Right part : free to move

• Graphene folding under the flow of water

- Control the orientation of folding crease:
 - Make complex origami structures
 - Electrical properties, etc.

- Per-atom energy drop after folding:
 - -1.5 meV for $\varphi = 0^\circ$
 - -2.5 meV for $\varphi = 12^{\circ}$

Summary & Future Work

• Summary:

- Present simulation on kirigami MoS₂
- Demonstrate a controllable graphene folding method
- Evaluate the energy barrier and energy decrease between folded & flat graphene with two configurations

Thank you

- Future work:
 - Thickness dependence of graphene folding under water flow
 - Various 2D materials

