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Outline

Ø FCC crystal and Nanoindentation MD 
simulation

ØMachine Learning (ML) model for structural 
analysis

ØHands-on session:

§ Structural analysis using ML

§ Visualization of predicted label in OVITO



Face Centered Cubic (FCC) Crystal

In FCC crystal, each unit cell contain atoms on 
all the 8 corners and the 6 faces 
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Nanoindentation Simulation of FCC Crystal 
using Molecular Dynamics (MD)

Indenter

Material

Nano-indentation Simulation: Used to study mechanical 
properties of material ( hardness, elastic constant)

During MD simulation, dislocations 
are generated inside the material



Various Atomic Configurations in FCC crystal

Surface

Dislocation

ØDislocation & surface atoms 
have missing neighbors

Bulk 
Atom



Various Atomic Configurations in FCC Crystal

Surface

Dislocation

ØGoal: Build a Machine 
Learning (ML) model 
that can identify all these 
structures

Labels for atomic configurations 
generated during 

nanoindentation simulation
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Surface 1
Dislocation 2
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Feature Vector
A mathematic representation for each atom which 
uniquely describes the local environment of an atom



Objective: Build a Machine Learning (ML) 
Model for Structural Analysis

Training Examples
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Step 1: Create Feature Vector for Each Atom

Convert atomic coordinates into a feature vector that captures 
the local geometry around each atom

X=(x1,x2,…,x5,x17)

Feature 
Vector 

Central atom under 
considerationLocal environment



Step 1: Create Feature Vector for Each Atom  

Feature Vector: Each atoms local environment will 
be represented using 17 different properties
1. No. of nearest neighbor (NN)
2. Average distance of NN 
3. Minimum distance of NN
4. Maximum distance of NN
5. Average distance between NN
6. Minimum distance between NN
7. Maximum distance between NN
8. NN’s average numbers of neighbor
9. NN’s neighbor’s average distance
10. NN’s neighbor’s minimum distance
11. NN’s neighbor’s maximum distance
12-14  Number of neighbor’s between 3-4, 4-5, 5-6A
15-17  Average distance of neighbor’s between 3-4, 4-5, 5-6A

NN



Step 2: Build a Linear Classifier using 
Machine Learning

Training Examples
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ML model (a linear classifier)

wi : tunable parameters that we will learn 
using training examples

ML model



Linear Support Vector Machine (SVM)

Linear classifier

Many possible 
choices for decision 
boundary

Linear SVM Maximizes the 
margin

Margin

Support vectors



Step 3: Evaluate Accuracy of Model

Ø Compare the accuracy of the model on 
training and test data.
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Ø Visualize the predicted labels by the ML 
model on test data using OVITO



Machine Learning Module 
for Structural Analysis



Files under Ml_module

1) atom_property.c and createfeature.c: C code to read atomic 
configuration and create feature vector for atoms 
2) Ni_ML.py: python code to create and train ML classifier 
3) SVM_model.py: python script to build the ML model
4) Ni_train.xyz, Ni_test1.xyz and Ni_test2.xyz : Atomic 
coordinate for training and test data

$   ls Ml_module
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Compute Feature Vector from Atomic 
Coordinates for Training and Validation

• Using training data (Ni_train.xyz), compute feature vector for 
each atom

./c_feature Ni_train.xyz feature/train.txt

• First, build executable (c_feature) from the C codes 
(atom_property.c and createfeature.c). 

• Using c_feature, compute feature vector from training data

make

Ni_train.xyz : Input atomic coordinate in XYZ format
feature/train.txt : Output that contains feature vector for 
each atoms



File Format that Contains Atomic 
Coordinates and Features

$ ls feature/train.txt

Ø Each line of the created feature vector contains atom type, 
x y z coordinates, label and 17 dimension feature vector for 
each atom

type x,y,z coordinate label Feature vector
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Ø Each line of the created feature vector contains atom type, 
x y z coordinates, label and 17 dimension feature vector for 
each atom

type x,y,z coordinate label Feature vector

$ ls feature/train.txt

File Format that Contains Atomic 
Coordinates and Features



Python Class to Build SVM Linear Classifier

class build_classifier:
def __init__(self, trainX, trainY):

§ load training data (trainX)
§ Load true labels (trainY)
§ Normalize training data (trainX)

def  train(self):
§ Train the ML model using normalize training data

def  predict(self):
§ predict labels of test data using trained model

def accuracy(self):
§ computes prediction accuracy of the model

build_classifier provides three member functions; train, 
prediction and accuracy.



Python Class to Build SVM Linear Classifier

class build_classifier:
def __init__(self, trainX, trainY):

§ load training data (trainX)
§ Load true labels (trainY)
§ Normalize training data (trainX)

def  train(self):
§ Train the ML model using normalize training data

def  predict(self):
§ predict labels of test data using trained model

def accuracy(self):
§ computes prediction accuracy of the model

Training data (trainX) and true label (trainY) is 
necessary to instantiate the class.



Python Class to Build SVM Linear Classifier

class build_classifier:
def __init__(self, trainX, trainY):

§ load training data (trainX)
§ Load true labels (trainY)
§ Normalize training data (trainX)

def  train(self):
§ Train the ML model using normalize training data

def  predict(self):
§ predict labels of test data using trained model

def accuracy(self):
§ computes prediction accuracy of the model

Trains the ML model given training data and true labels.



Python Class to Build SVM Linear Classifier

class build_classifier:
def __init__(self, trainX, trainY):

§ load training data (trainX)
§ Load true labels (trainY)
§ Normalize training data (trainX)

def  train(self):
§ Train the ML model using normalize training data

def  predict(self):
§ predict labels of test data using trained model

def accuracy(self):
§ computes prediction accuracy of the model

Using the trained model, predict label for test data. 



Python Class to Build SVM Linear Classifier

class build_classifier:
def __init__(self, trainX, trainY):

§ load training data (trainX)
§ Load true labels (trainY)
§ Normalize training data (trainX)

def  train(self):
§ Train the ML model using normalize training data

def  predict(self):
§ predict labels of test data using trained model

def accuracy(self):
§ computes prediction accuracy of the model

Calculate error and accuracy of the developed model. 



1. Train the Linear SVM Classifier
• Instantiate build_classifier class

Ni_model = build_classifier (train_X, train_Y)

Ni_model.train()

• Trains a linear classifier using svm.LinearSVC(), and 
store the model into a variable self.model.

Number of training examples: 18686
Training error = 3.16%
Training accuracy = 96.83%

• train() also computes error and accuracy of the developed 
model. 



2. Compute Accuracy of the Model 
using Test Data

./c_feature Ni_test1.xyz feature/test_1.txt

• Convert atomic coordinates of test data (Ni_test1.xyz) into 
feature vector.

• Predict labels of the test data using the trained model by 
predict() and accuracy() function.

labelpred = Ni_model.predict(testX) 

accuracy = Ni_model.accuracy(textY,labelpred)

Test error = 1.03%
Test accuracy = 98.96%

Output: 



3. Visualize the Predicted Label in 
OVITO

• writexyz() function creates an output file 
(output.xyz) that contains atomic coordinates and 
the true and predicted labels 

• Visualize the predicted label (output.xyz) in 
OVITO

writexyz(Natoms,position,labelpred,labeltrue)



True Label ML Predicted Label

3. Visualize the Predicted Label in 
OVITO


