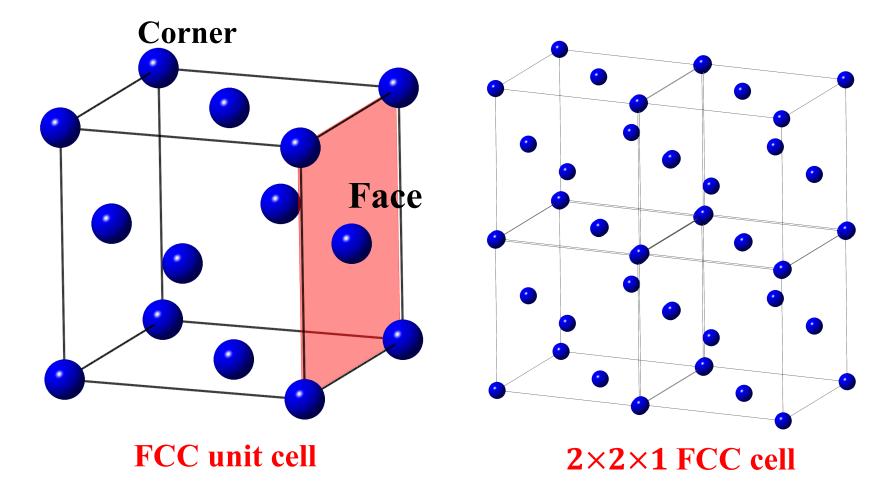
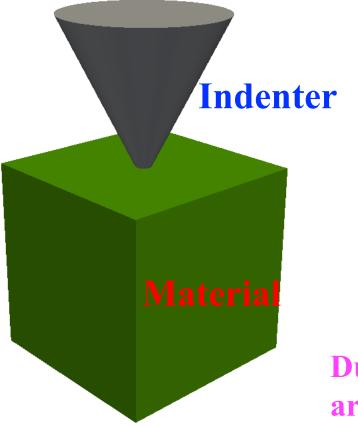
Machine Learning for Structural Analysis in FCC Crystal

Pankaj Rajak Argonne National Laboratory Ken-ichi Nomura, Nitish Baradwaj Collaboratory for Advanced Computing & Simulations University of Southern California

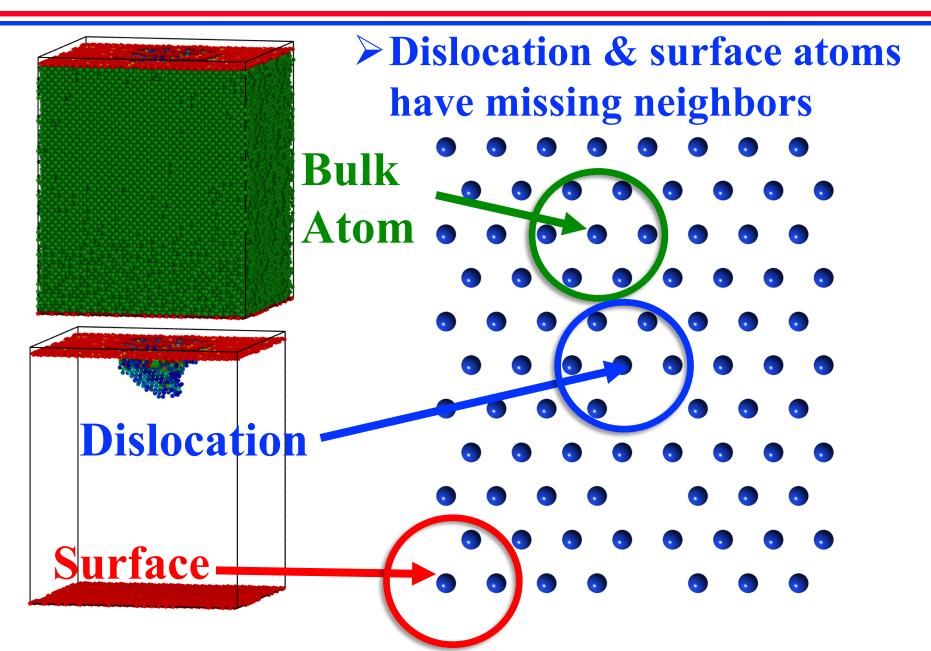


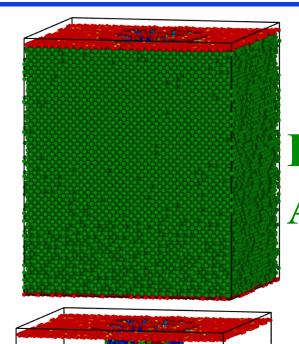
- FCC crystal and Nanoindentation MD simulation
- Machine Learning (ML) model for structural analysis
- **>** Hands-on session:
 - Structural analysis using ML
 - Visualization of predicted label in OVITO


Face Centered Cubic (FCC) Crystal


In FCC crystal, each unit cell contain atoms on all the 8 corners and the 6 faces

Nanoindentation Simulation of FCC Crystal using Molecular Dynamics (MD)


Nano-indentation Simulation: Used to study mechanical properties of material (hardness, elastic constant)



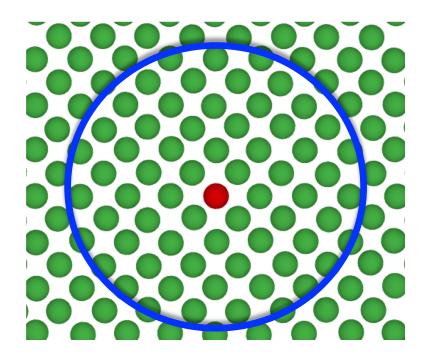
During MD simulation, dislocations are generated inside the material

Various Atomic Configurations in FCC crystal

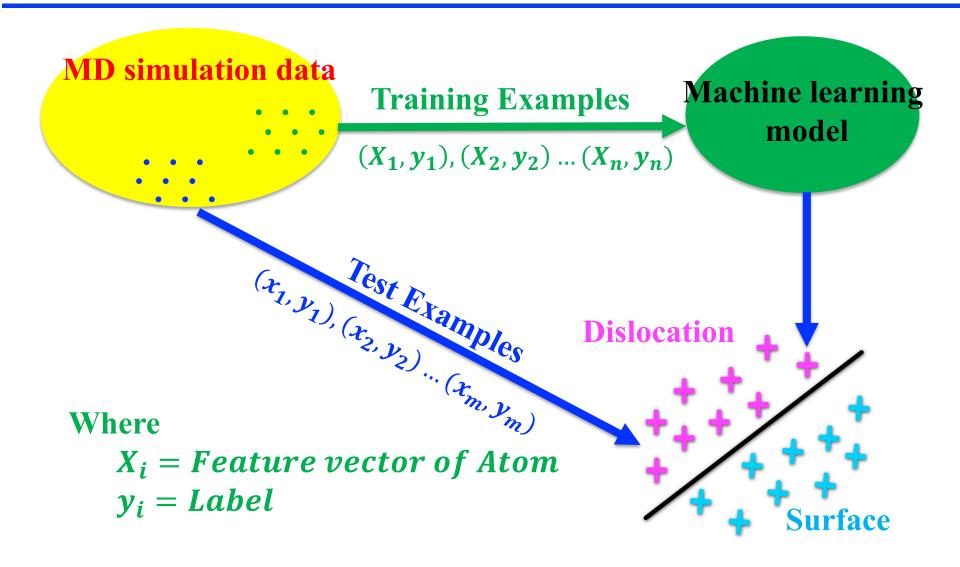
Various Atomic Configurations in FCC Crystal

Dislocation

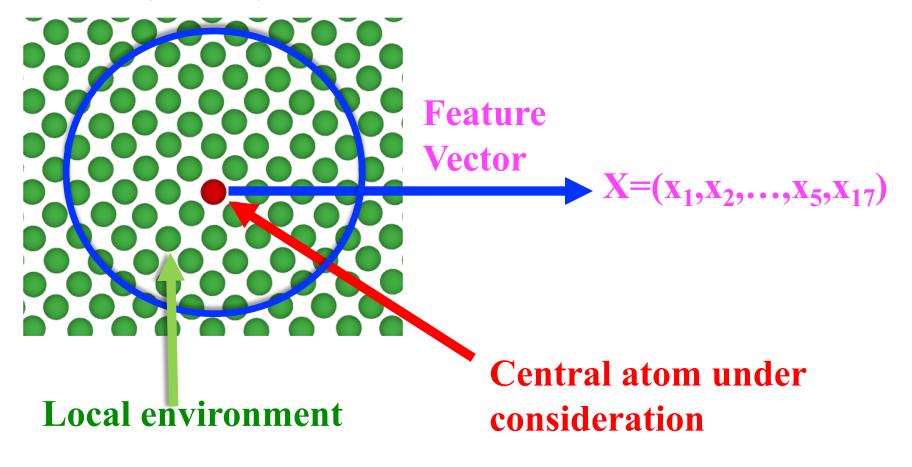
Surface


 Goal: Build a Machine Learning (ML) model
 Bulk that can identify all these Atom structures

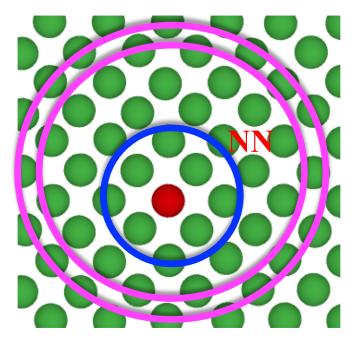
> Labels for atomic configurations generated during nanoindentation simulation


	Label (Y)
Bulk Atom	0
Surface	1
Dislocation	2

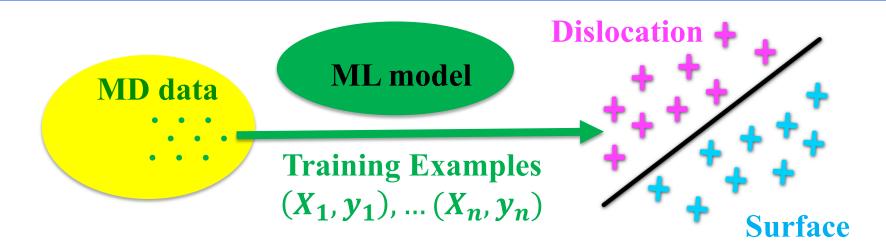
Feature Vector


A mathematic representation for each atom which uniquely describes the local environment of an atom

Objective: Build a Machine Learning (ML) Model for Structural Analysis



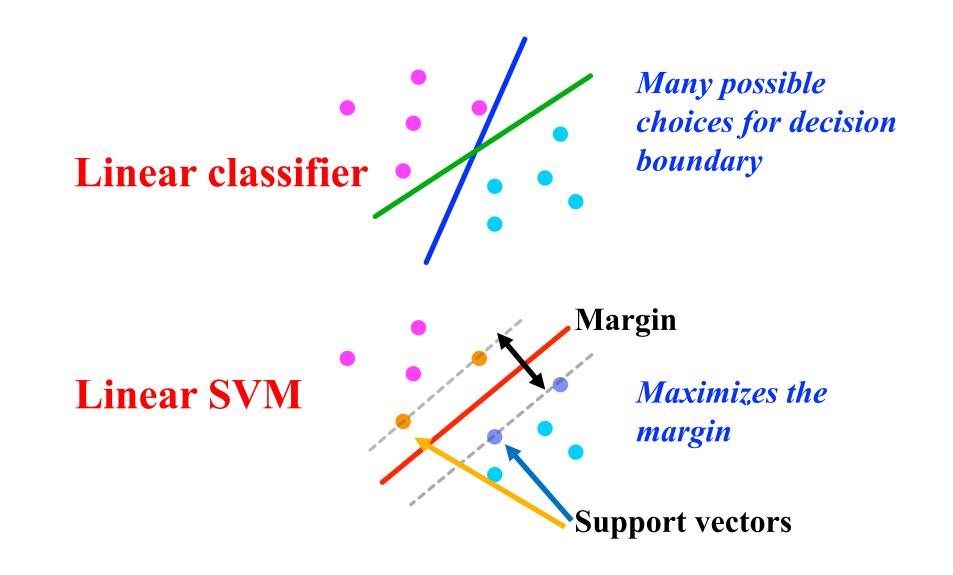
Convert atomic coordinates into a feature vector that captures the local geometry around each atom



Feature Vector: Each atoms local environment will be represented using 17 different properties

- 1. No. of nearest neighbor (NN)
- 2. Average distance of NN
- 3. Minimum distance of NN
- 4. Maximum distance of NN
- 5. Average distance between NN
- 6. Minimum distance between NN
- 7. Maximum distance between NN
- 8. NN's average numbers of neighbor
- 9. NN's neighbor's average distance
- 10. NN's neighbor's minimum distance
- 11. NN's neighbor's maximum distance
- 12-14 Number of neighbor's between 3-4, 4-5, 5-6A
- 15-17 Average distance of neighbor's between 3-4, 4-5, 5-6A

Step 2: Build a Linear Classifier using Machine Learning



ML model (a linear classifier)

 $y_{predicted} = w_1 x_1 + \dots + w_{17} x_{17} - b \begin{cases} > 0 \ (Dislocation) \\ \le 0 \ (Surface) \end{cases}$

w_i : tunable parameters that we will learn using training examples

Linear Support Vector Machine (SVM)

Step 3: Evaluate Accuracy of Model

Compare the accuracy of the model on training and test data.

$$Error = \frac{1}{N} (y_{predicted} - y_{true})^{2}$$
$$Accuracy = 1 - Error$$

Visualize the predicted labels by the ML model on test data using OVITO

Machine Learning Module for Structural Analysis

\$ ls Ml_module

Makefile Ni_ML.ipynb Ni_ML.py Ni_test1.xyz Ni_test2.xyz

Ni_train.xyz of SVM_model.py atom_property.c atom_property.h createfeature.c

createfeature.h
feature/
readinput.py

1) atom_property.c and createfeature.c: C code to read atomic configuration and create feature vector for atoms

2) Ni_ML.py: python code to create and train ML classifier

3) SVM_model.py: python script to build the ML model

\$ ls Ml_module

Makefile	Ni_train.xyz	createfeature.h
Ni ML.ipynb	SVM_model.py	feature/
Ni_ML.py	atom_property.c	readinput.py
Ni_test1.xyz	atom_property.h	
Ni_test2.xyz	createfeature.c	_

1) atom_property.c and createfeature.c: C code to read atomic configuration and create feature vector for atoms

2) Ni_ML.py: python code to create and train ML classifier

3) SVM_model.py: python script to build the ML model

\$ ls Ml_module

Makefile Ni_ML.ipynb Ni_ML.py Ni_test1.xyz Ni_test2.xyz

Ni_train.xyz SVM_model.py atom_property.c atom_property.h createfeature.c createfeature.h
feature/
readinput.py

1) atom_property.c and createfeature.c: C code to read atomic configuration and create feature vector for atoms

2) Ni_ML.py: python code to create and train ML classifier

3) SVM_model.py: python script to build the ML model

\$ ls Ml_module

Makefile	Ni_train.xyz	createfeature.h
Ni_ML.ipynb	SVM_model.py	feature/
Ni_ML.py	atom_property.c	readinput.py
Ni_test1.xyz	atom_property.h	
Ni_test2.xyz	createfeature.c	_

- 1) atom_property.c and createfeature.c: C code to read atomic configuration and create feature vector for atoms
- 2) Ni_ML.py: python code to create and train ML classifier
- 3) SVM_model.py: python script to build the ML model

Compute Feature Vector from Atomic Coordinates for Training and Validation

- Using training data (Ni_train.xyz), compute feature vector for each atom
- First, build executable (c_feature) from the C codes (atom_property.c and createfeature.c).

make

• Using c_feature, compute feature vector from training data

./c_feature Ni_train.xyz feature/train.txt

Ni_train.xyz : *Input atomic coordinate in XYZ format* feature/train.txt : *Output that contains feature vector for each atoms*

Each line of the created feature vector contains atom type, x y z coordinates, label and 17 dimension feature vector for each atom

\$ ls feature/train.txt

114376	-								
114376									
101.4810	03 130.103226	101,481003							
			1 764020	2	0 000000	2 471502	2 444670	2 500000	2 201102
Ni	1.756660	4.199579	1.764920	2	8.000000	2.471503	2.444679	2.500690	3.391102
Ni	1.746970	5.941798	0.018508	0	11.000000	2.480045	2.458448	2.507447	3.551417
Ni	5.244970	4.214318	1.754720	2	8.00000	2.467677	2.449782	2.491687	3.391526
Ni	3.489960	5.923518	1.752180	0	11.000000	2.474269	2.449782	2.492165	3.541959
Ni	3.495490	4.193375	0.006788	2	7.000000	2.476350	2.457604	2.497069	3.304576
Ni	8.770810	4.207564	1.757480	2	8.000000	2.473605	2.448607	2.490758	3.395039
Ni	6.990840	5.939387	1.742840	0	12.000000	2.478066	2.454397	2.486933	3.549592
Ni	8.760920	5.940617	0.005285	0	12.000000	2.477614	2.464313	2.500152	3.548933
Ni	6.998650	4.182088	0.009597	2	8.000000	2.480736	2.468257	2.497350	3.387989
Ni	12.249300	4.191433	1.748420	2	8.000000	2.471725	2.464085	2.477986	3.381069
Ni	10.503100	5.947286	1.755110	0	12.000000	2.474824	2.455090	2.500750	3.544996
Ni	12.237800	5.942111	0.005140	0	12.000000	2.474072	2.455739	2.493437	3.543886
Ni	15.734100	4.192092	1.764940	2	8.000000	2.480301	2.461069	2.498584	3.390528
Ni	13.984100	5.945300	1.749540	0	12.000000	2.472308	2.454947	2.483916	3.541379
Ni	13.987700	4.219180	0.002308	2	8.000000	2.467989	2.455739	2.481780	3.391241
Ni	15.745700	5.948635	0.000045	0	12.000000	2.474543	2.451119	2.490067	3.544575
Ni	17.493999	5.937821	1.738920	0	12.000000	2.474458	2.447819	2.490233	3.544428

type x,y,z coordinate

label

Feature vector

Each line of the created feature vector contains atom type, x y z coordinates, label and 17 dimension feature vector for each atom

\$ ls feature/train.txt

114376									
114570									
	481003 130.103226	101.481003							
Ni	1.756660	4.199579	1.764920	2	8.000000	2.471503	2.444679	2.500690	3.391102
Ni	1.746970	5.941798	0.018508	0	11.000000	2.480045	2.458448	2.507447	3.551417
Ni	5.244970	4.214318	1.754720	2	8.000000	2.467677	2.449782	2.491687	3.391526
Ni	3.489960	5.923518	1.752180	0	11.000000	2.474269	2.449782	2.492165	3.541959
Ni	3.495490	4.193375	0.006788	2	7.000000	2.476350	2.457604	2.497069	3.304576
Ni	8.770810	4.207564	1.757480	2	8.000000	2.473605	2.448607	2.490758	3.395039
Ni	6.990840	5.939387	1.742840	0	12.000000	2.478066	2.454397	2.486933	3.549592
Ni	8.760920	5.940617	0.005285	0	12.000000	2.477614	2.464313	2.500152	3.548933
Ni	6.998650	4.182088	0.009597	2	8.000000	2.480736	2.468257	2.497350	3.387989
Ni	12.249300	4.191433	1.748420	2	8.000000	2.471725	2.464085	2.477986	3.381069
Ni	10.503100	5.947286	1.755110	0	12.000000	2.474824	2.455090	2.500750	3.544996
Ni	12.237800	5.942111	0.005140	0	12.000000	2.474072	2.455739	2.493437	3.543886
Ni	15.734100	4.192092	1.764940	2	8.000000	2.480301	2.461069	2.498584	3.390528
Ni	13.984100	5.945300	1.749540	0	12.000000	2.472308	2.454947	2.483916	3.541379
Ni	13.987700	4.219180	0.002308	2	8.000000	2.467989	2.455739	2.481780	3.391241
Ni	15.745700	5.948635	0.000045	0	12.000000	2.474543	2.451119	2.490067	3.544575
Ni	17.493999	5.937821	1.738920	0	12.000000	2.474458	2.447819	2.490233	3.544428

type

x,y,z coordinate

label

Feature vector

Each line of the created feature vector contains atom type, x y z coordinates, label and 17 dimension feature vector for each atom

\$ ls feature/train.txt

114376	-								
17									
101.48100	3 130 103226	101 /81003							
Ni	1.756660	4.199579	1.764920	2	8.000000	2.471503	2.444679	2.500690	3.391102
Ni	1.746970	5.941798	0.018508	0	11.000000	2.480045	2.458448	2.507447	3.551417
Ni	5.244970	4.214318	1.754720	2	8.000000	2.467677	2.449782	2.491687	3.391526
Ni	3.489960	5.923518	1.752180	0	11.000000	2.474269	2.449782	2.492165	3.541959
Ni	3.495490	4.193375	0.006788	2	7.000000	2.476350	2.457604	2.497069	3.304576
Ni	8.770810	4.207564	1.757480	2	8.000000	2.473605	2.448607	2.490758	3.395039
Ni	6.990840	5.939387	1.742840	0	12.000000	2.478066	2.454397	2.486933	3.549592
Ni	8.760920	5.940617	0.005285	0	12.000000	2.477614	2.464313	2.500152	3.548933
Ni	6.998650	4.182088	0.009597	2	8.000000	2.480736	2.468257	2.497350	3.387989
Ni	12.249300	4.191433	1.748420	2	8.000000	2.471725	2.464085	2.477986	3.381069
Ni	10.503100	5.947286	1.755110	0	12.000000	2.474824	2.455090	2.500750	3.544996
Ni	12.237800	5.942111	0.005140	0	12.000000	2.474072	2.455739	2.493437	3.543886
Ni	15.734100	4.192092	1.764940	2	8.000000	2.480301	2.461069	2.498584	3.390528
Ni	13.984100	5.945300	1.749540	0	12.000000	2.472308	2.454947	2.483916	3.541379
Ni	13.987700	4.219180	0.002308	2	8.000000	2.467989	2.455739	2.481780	3.391241
Ni	15.745700	5.948635	0.000045	0	12.000000	2.474543	2.451119	2.490067	3.544575
Ni	17.493999	5.937821	1.738920	0	12.000000	2.474458	2.447819	2.490233	3.544428
		_							

type x,y,z coordinate

label

Feature vector

Each line of the created feature vector contains atom type, x y z coordinates, label and 17 dimension feature vector for each atom

\$ ls feature/train.txt

114376									
114570									
	130,103226	101.481003							
Ni	1.756660	4.199579	1.764920	2	8.000000	2.471503	2.444679	2.500690	3.391102
Ni	1.746970	5.941798	0.018508	0	11.000000	2.480045	2.458448	2.507447	3.551417
Ni	5.244970	4.214318	1.754720	2	8.000000	2.467677	2.449782	2.491687	3.391526
Ni	3.489960	5.923518	1.752180	0	11.000000	2.474269	2.449782	2.492165	3.541959
Ni	3.495490	4.193375	0.006788	2	7.000000	2.476350	2.457604	2.497069	3.304576
Ni	8.770810	4.207564	1.757480	2	8.000000	2.473605	2.448607	2.490758	3.395039
Ni	6.990840	5.939387	1.742840	0	12.000000	2.478066	2.454397	2.486933	3.549592
Ni	8.760920	5.940617	0.005285	0	12.000000	2.477614	2.464313	2.500152	3.548933
Ni	6.998650	4.182088	0.009597	2	8.000000	2.480736	2.468257	2.497350	3.387989
Ni	12.249300	4.191433	1.748420	2	8.000000	2.471725	2.464085	2.477986	3.381069
Ni	10.503100	5.947286	1.755110	0	12.000000	2.474824	2.455090	2.500750	3.544996
Ni	12.237800	5.942111	0.005140	0	12.000000	2.474072	2.455739	2.493437	3.543886
Ni	15.734100	4.192092	1.764940	2	8.000000	2.480301	2.461069	2.498584	3.390528
Ni	13.984100	5.945300	1.749540	0	12.000000	2.472308	2.454947	2.483916	3.541379
Ni	13.987700	4.219180	0.002308	2	8.000000	2.467989	2.455739	2.481780	3.391241
Ni	15.745700	5.948635	0.000045	0	12.000000	2.474543	2.451119	2.490067	3.544575
Ni	17.493999	5.937821	1.738920	0	12.000000	2.474458	2.447819	2.490233	3.544428

type x,y,z coordinate

label

Feature vector

Each line of the created feature vector contains atom type, x y z coordinates, label and 17 dimension feature vector for each atom

\$ ls feature/train.txt

114376									
17									
101.48		101.481003							
Ni	1.756660	4.199579	1.764920	2	8.000000	2.471503	2.444679	2.500690	3.391102
Ni	1.746970	5.941798	0.018508	0	11.000000	2.480045	2.458448	2.507447	3.551417
Ni	5.244970	4.214318	1.754720	2	8.000000	2.467677	2.449782	2.491687	3.391526
Ni	3.489960	5.923518	1.752180	0	11.000000	2.474269	2.449782	2.492165	3.541959
Ni	3.495490	4.193375	0.006788	2	7.000000	2.476350	2.457604	2.497069	3.304576
Ni	8.770810	4.207564	1.757480	2	8.000000	2.473605	2.448607	2.490758	3.395039
Ni	6.990840	5.939387	1.742840	0	12.000000	2.478066	2.454397	2.486933	3.549592
Ni	8.760920	5.940617	0.005285	0	12.000000	2.477614	2.464313	2.500152	3.548933
Ni	6.998650	4.182088	0.009597	2	8.000000	2.480736	2.468257	2.497350	3.387989
Ni	12.249300	4.191433	1.748420	2	8.000000	2.471725	2.464085	2.477986	3.381069
Ni	10.503100	5.947286	1.755110	0	12.000000	2.474824	2.455090	2.500750	3.544996
Ni	12.237800	5.942111	0.005140	0	12.000000	2.474072	2.455739	2.493437	3.543886
Ni	15.734100	4.192092	1.764940	2	8.000000	2.480301	2.461069	2.498584	3.390528
Ni	13.984100	5.945300	1.749540	0	12.000000	2.472308	2.454947	2.483916	3.541379
Ni	13.987700	4.219180	0.002308	2	8.000000	2.467989	2.455739	2.481780	3.391241
Ni	15.745700	5.948635	0.000045	0	12.000000	2.474543	2.451119	2.490067	3.544575
Ni	17.493999	5.937821	1.738920	0	12.000000	2.474458	2.447819	2.490233	3.544428

type x,y,z coordinate

label

Feature vector

build_classifier provides three member functions; train, prediction and accuracy.

class build_classifier:

- def __init__(self, trainX, trainY):
 - load training data (trainX)
 - Load true labels (trainY)
 - Normalize training data (trainX)

def train(self):

Train the ML model using normalize training data

def predict(self):

predict labels of test data using trained model

def accuracy(self):

Training data (*trainX*) and true label (*trainY*) is necessary to instantiate the class.

class build_classifier:

def __init__(self, trainX, trainY):

- load training data (trainX)
- Load true labels (trainY)
- Normalize training data (trainX)

def train(self):

Train the ML model using normalize training data

def predict(self):

predict labels of test data using trained model

def accuracy(self):

Trains the ML model given training data and true labels.

class build_classifier:

- def __init__(self, trainX, trainY):
 - load training data (trainX)
 - Load true labels (trainY)
 - Normalize training data (trainX)

def train(self):

 Train the ML model using normalize training data def predict(self):
 predict labels of test data using trained model

def accuracy(self):

Using the trained model, predict label for test data.

class build_classifier:

- def __init__(self, trainX, trainY):
 - load training data (trainX)
 - Load true labels (trainY)
 - Normalize training data (trainX)

def train(self):

Train the ML model using normalize training data

def predict(self):

predict labels of test data using trained model

def accuracy(self):

Calculate error and accuracy of the developed model.

class build classifier: def init (self, trainX, trainY): load training data (trainX) Load true labels (trainY) Normalize training data (trainX) def train(self): Train the ML model using normalize training data def predict(self): predict labels of test data using trained model def accuracy(self): computes prediction accuracy of the model

1. Train the Linear SVM Classifier

• Instantiate build_classifier class

Ni_model = build_classifier (train_X, train_Y)

- Trains a linear classifier using svm.LinearSVC(), and store the model into a variable self.model.
- Ni_model.train()
- train() also computes error and accuracy of the developed model.

Number of training examples: 18686 Training error = 3.16% Training accuracy = 96.83%

2. Compute Accuracy of the Model using Test Data

- Convert atomic coordinates of test data (Ni_test1.xyz) into feature vector.
- ./c_feature Ni_test1.xyz feature/test_1.txt
- Predict labels of the test data using the trained model by predict() and accuracy() function.

label_{pred} = Ni_model.predict(testX)

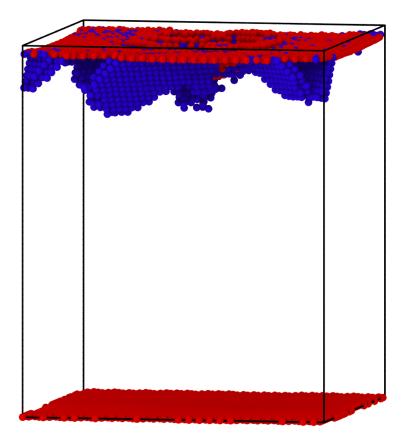
accuracy = Ni_model.accuracy(textY, label_{pred})

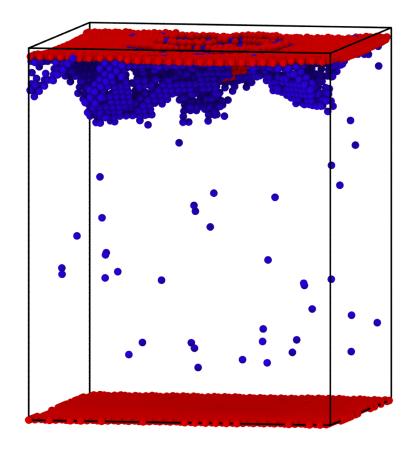
Output:

Test error = 1.03% Test accuracy = 98.96%

3. Visualize the Predicted Label in OVITO

 writexyz() function creates an output file (output.xyz) that contains atomic coordinates and the true and predicted labels


writexyz(N_{atoms}, position, label_{pred}, label_{true})


• Visualize the predicted label (output.xyz) in OVITO

3. Visualize the Predicted Label in OVITO

True Label

ML Predicted Label

