
Machine Learning for
Structural Analysis in FCC Crystal

Pankaj Rajak
Argonne National Laboratory

Ken-ichi Nomura, Nitish Baradwaj
Collaboratory for Advanced Computing & Simulations

University of Southern California

Outline

Ø FCC crystal and Nanoindentation MD
simulation

ØMachine Learning (ML) model for structural
analysis

ØHands-on session:

§ Structural analysis using ML

§ Visualization of predicted label in OVITO

Face Centered Cubic (FCC) Crystal

In FCC crystal, each unit cell contain atoms on
all the 8 corners and the 6 faces

FCC unit cell !×!×# FCC cell

Corner

Face

Nanoindentation Simulation of FCC Crystal
using Molecular Dynamics (MD)

Indenter

Material

Nano-indentation Simulation: Used to study mechanical
properties of material (hardness, elastic constant)

During MD simulation, dislocations
are generated inside the material

Various Atomic Configurations in FCC crystal

Surface

Dislocation

ØDislocation & surface atoms
have missing neighbors

Bulk
Atom

Various Atomic Configurations in FCC Crystal

Surface

Dislocation

ØGoal: Build a Machine
Learning (ML) model
that can identify all these
structures

Labels for atomic configurations
generated during

nanoindentation simulation

Label (Y)
Bulk Atom 0

Surface 1
Dislocation 2

Bulk
Atom

Feature Vector
A mathematic representation for each atom which
uniquely describes the local environment of an atom

Objective: Build a Machine Learning (ML)
Model for Structural Analysis

Training Examples

!", $" , !%, $% … (!(, $()

Machine learning
model

*" , $" , *% , $% … (*+ , $+)

Test Examples

.
. . .

. . .
.

MD simulation data

Dislocation

Surface

Where
!, = ./0123/ 4/5163 67 816+
$, = 90:/;

Step 1: Create Feature Vector for Each Atom

Convert atomic coordinates into a feature vector that captures
the local geometry around each atom

X=(x1,x2,…,x5,x17)

Feature
Vector

Central atom under
considerationLocal environment

Step 1: Create Feature Vector for Each Atom

Feature Vector: Each atoms local environment will
be represented using 17 different properties
1. No. of nearest neighbor (NN)
2. Average distance of NN
3. Minimum distance of NN
4. Maximum distance of NN
5. Average distance between NN
6. Minimum distance between NN
7. Maximum distance between NN
8. NN’s average numbers of neighbor
9. NN’s neighbor’s average distance
10. NN’s neighbor’s minimum distance
11. NN’s neighbor’s maximum distance
12-14 Number of neighbor’s between 3-4, 4-5, 5-6A
15-17 Average distance of neighbor’s between 3-4, 4-5, 5-6A

NN

Step 2: Build a Linear Classifier using
Machine Learning

Training Examples
!", $" , … (!', $')

.
. . .MD data

Dislocation

Surface

$)*+,-./+, = 1"2" +⋯+1"52"5 − 7 8
> : (;-<=>.?/->')
≤ : (AB*C?.+)

ML model (a linear classifier)

wi : tunable parameters that we will learn
using training examples

ML model

Linear Support Vector Machine (SVM)

Linear classifier

Many possible
choices for decision
boundary

Linear SVM Maximizes the
margin

Margin

Support vectors

Step 3: Evaluate Accuracy of Model

Ø Compare the accuracy of the model on
training and test data.

!""#" = %
& '(")*+,-)* − '-"/)

0

1,,/"2,' = % − !""#"

Ø Visualize the predicted labels by the ML
model on test data using OVITO

Machine Learning Module
for Structural Analysis

Files under Ml_module

1) atom_property.c and createfeature.c: C code to read atomic
configuration and create feature vector for atoms
2) Ni_ML.py: python code to create and train ML classifier
3) SVM_model.py: python script to build the ML model
4) Ni_train.xyz, Ni_test1.xyz and Ni_test2.xyz : Atomic
coordinate for training and test data

$ ls Ml_module

1) atom_property.c and createfeature.c: C code to read atomic
configuration and create feature vector for atoms
2) Ni_ML.py: python code to create and train ML classifier
3) SVM_model.py: python script to build the ML model
4) Ni_train.xyz, Ni_test1.xyz and Ni_test2.xyz : Atomic
coordinate for training and test data

$ ls Ml_module

Files under Ml_module

1) atom_property.c and createfeature.c: C code to read atomic
configuration and create feature vector for atoms
2) Ni_ML.py: python code to create and train ML classifier
3) SVM_model.py: python script to build the ML model
4) Ni_train.xyz, Ni_test1.xyz and Ni_test2.xyz : Atomic
coordinate for training and test data

$ ls Ml_module

Files under Ml_module

1) atom_property.c and createfeature.c: C code to read atomic
configuration and create feature vector for atoms
2) Ni_ML.py: python code to create and train ML classifier
3) SVM_model.py: python script to build the ML model
4) Ni_train.xyz, Ni_test1.xyz and Ni_test2.xyz : Atomic
coordinate for training and test data

$ ls Ml_module

Files under Ml_module

Compute Feature Vector from Atomic
Coordinates for Training and Validation

• Using training data (Ni_train.xyz), compute feature vector for
each atom

./c_feature Ni_train.xyz feature/train.txt

• First, build executable (c_feature) from the C codes
(atom_property.c and createfeature.c).

• Using c_feature, compute feature vector from training data

make

Ni_train.xyz : Input atomic coordinate in XYZ format
feature/train.txt : Output that contains feature vector for
each atoms

File Format that Contains Atomic
Coordinates and Features

$ ls feature/train.txt

Ø Each line of the created feature vector contains atom type,
x y z coordinates, label and 17 dimension feature vector for
each atom

type x,y,z coordinate label Feature vector

Ø Each line of the created feature vector contains atom type,
x y z coordinates, label and 17 dimension feature vector for
each atom

type x,y,z coordinate label Feature vector

$ ls feature/train.txt

File Format that Contains Atomic
Coordinates and Features

Ø Each line of the created feature vector contains atom type,
x y z coordinates, label and 17 dimension feature vector for
each atom

type x,y,z coordinate label Feature vector

$ ls feature/train.txt

File Format that Contains Atomic
Coordinates and Features

Ø Each line of the created feature vector contains atom type,
x y z coordinates, label and 17 dimension feature vector for
each atom

type x,y,z coordinate label Feature vector

$ ls feature/train.txt

File Format that Contains Atomic
Coordinates and Features

Ø Each line of the created feature vector contains atom type,
x y z coordinates, label and 17 dimension feature vector for
each atom

type x,y,z coordinate label Feature vector

$ ls feature/train.txt

File Format that Contains Atomic
Coordinates and Features

Python Class to Build SVM Linear Classifier

class build_classifier:
def __init__(self, trainX, trainY):

§ load training data (trainX)
§ Load true labels (trainY)
§ Normalize training data (trainX)

def train(self):
§ Train the ML model using normalize training data

def predict(self):
§ predict labels of test data using trained model

def accuracy(self):
§ computes prediction accuracy of the model

build_classifier provides three member functions; train,
prediction and accuracy.

Python Class to Build SVM Linear Classifier

class build_classifier:
def __init__(self, trainX, trainY):

§ load training data (trainX)
§ Load true labels (trainY)
§ Normalize training data (trainX)

def train(self):
§ Train the ML model using normalize training data

def predict(self):
§ predict labels of test data using trained model

def accuracy(self):
§ computes prediction accuracy of the model

Training data (trainX) and true label (trainY) is
necessary to instantiate the class.

Python Class to Build SVM Linear Classifier

class build_classifier:
def __init__(self, trainX, trainY):

§ load training data (trainX)
§ Load true labels (trainY)
§ Normalize training data (trainX)

def train(self):
§ Train the ML model using normalize training data

def predict(self):
§ predict labels of test data using trained model

def accuracy(self):
§ computes prediction accuracy of the model

Trains the ML model given training data and true labels.

Python Class to Build SVM Linear Classifier

class build_classifier:
def __init__(self, trainX, trainY):

§ load training data (trainX)
§ Load true labels (trainY)
§ Normalize training data (trainX)

def train(self):
§ Train the ML model using normalize training data

def predict(self):
§ predict labels of test data using trained model

def accuracy(self):
§ computes prediction accuracy of the model

Using the trained model, predict label for test data.

Python Class to Build SVM Linear Classifier

class build_classifier:
def __init__(self, trainX, trainY):

§ load training data (trainX)
§ Load true labels (trainY)
§ Normalize training data (trainX)

def train(self):
§ Train the ML model using normalize training data

def predict(self):
§ predict labels of test data using trained model

def accuracy(self):
§ computes prediction accuracy of the model

Calculate error and accuracy of the developed model.

1. Train the Linear SVM Classifier
• Instantiate build_classifier class

Ni_model = build_classifier (train_X, train_Y)

Ni_model.train()

• Trains a linear classifier using svm.LinearSVC(), and
store the model into a variable self.model.

Number of training examples: 18686
Training error = 3.16%
Training accuracy = 96.83%

• train() also computes error and accuracy of the developed
model.

2. Compute Accuracy of the Model
using Test Data

./c_feature Ni_test1.xyz feature/test_1.txt

• Convert atomic coordinates of test data (Ni_test1.xyz) into
feature vector.

• Predict labels of the test data using the trained model by
predict() and accuracy() function.

labelpred = Ni_model.predict(testX)

accuracy = Ni_model.accuracy(textY,labelpred)

Test error = 1.03%
Test accuracy = 98.96%

Output:

3. Visualize the Predicted Label in
OVITO

• writexyz() function creates an output file
(output.xyz) that contains atomic coordinates and
the true and predicted labels

• Visualize the predicted label (output.xyz) in
OVITO

writexyz(Natoms,position,labelpred,labeltrue)

True Label ML Predicted Label

3. Visualize the Predicted Label in
OVITO

