Introduction to Non-Adiabatic Quantum Molecular Dynamics

Lindsay Bassman

Aravind Krishnamoorthy, Ken-ichi Nomura, Subodh Tiwari

Collaboratory for Advanced Computing and Simulation Department of Material Science & Department of Physics University of Southern California

3rd MAGICS Material Software Workshop Gaithersburg, MD November 13, 2018

Non-Adiabatic QMD (NAQMD)

Non-Adiabatic QMD (NAQMD):

- QXMD implements NAQMD based on TDDFT
- Allows electrons to non-radiatively transition between excited states
- Allows for simulation of photo-excitation of materials

Time-Dependent Density Functional Theory (TDDFT):

- DFT with a time-dependent external potential
- Framework to describe electron dynamics outside of electronic ground state

Adiabatic Vs. Non-Adiabatic QMD

Kohn-Sham energy eigenvalues versus time in adiabatic (left) and non-adiabatic (right) QMD simulations of monolayer MoSe_{2.}

Kohn-Sham Energy Eigenvalues Vs. Time

Kohn-Sham Energy Eigenvalues Vs. Time

Hands-on: Non-Adiabatic Molecular Dynamics

Overview

- 1. Execute NAQMD simulation
- 2. Examine input file
- 3. Examine output files
- 4. Post-process and visualize data

Hands-on: Execute NAQMD Simulation

Goal: Perform NAQMD simulation of monolayer MoSe₂

1. Log-in to HPC: \$ssh magicsXX@hpc-scec.usc.edu

2. Navigate to QXMD Example directory: s cd staging/QXMD_Session/QXMD/Example/

3. Change to 05_NAQMD/01_MoSe2 directory \$ cd 05_NAQMD/01_MoSe2 \$ls

analysis control data job.slurm

4. Submit NAQMD job

\$ sbatch job.slurm

*TDDFT-MD	
(on/off)	:
.true.	: (ltddft)
(FSSH-switch)	•
.true.	: (lfssh_switch)
(time step)	•
0.04d0	: (dttddft)
(restart)	
.false.	: (ltddft_start)
(occupations)	:
4	: (nocc_change)
35 0.0 0.0	: (numband, occ_new)
36 0.0 0.0	:
37 2.0 0.0	:
38 2.0 0.0	:
*end	

on/off: True: Run QMD based on TDDFT¹ False: Run QMD based on DFT

FSSH-switch: True: Allow electrons to hop between bands² **False**: Electron occupations held fixed

¹Gross, E. K. U., and W. Kohn. <u>Adv. Quantum Chem.</u> **21**, 255-291, (1990) ²Tully, John C. <u>J. Chem. Phys.</u> **93.2**, 1061-1071 (1990)

time step: Time step in [a.u.] for numerically integrating TDDFT equations

restart: True: Read excited electron occupations from previous run **False**: Read electron occupations from input file

occupations: nocc_change - # of electronic occupations to be changed numband - band index of changed occupation occ_new - new occupations numbers for the given bands (optionally spin up & spin down)

*dump wavefunctions	:	
(on/off) :		
.true.	: (ldpwav)	
(bands)	:	
36, 37	: (ibstt1,ibstt2)	
(skip step)	:	
101	: (nskip_dpwav)	
*end		

(on/off) – whether or not to dump wavefunction data

(bands) – range of band indices for which to dump wavefunction data

(skip step) – number of steps to skip between dumping data

Hands-on: Examine Output Files

1. Check your current directory:

\$ pwd
...staging/QXMD_Session/QXMD/Example/05_NAQMD/01_MoSe2

2. Change to data/ directory \$ cd data \$ls

3. New output files of interest:

qm_eigv.d.36.000000 – 3D wavefunction data for band index 36 on the 0th time step **qm_eigv.d.37.000000** – 3D wavefunction data for band index 37 on the 0th time step

qm_td_eig.d – Kohn-Sham eigenenergies of all bands plus band occupancies

QM_tddftfssh – *Necessary binary file for restarting an NAQMD simulation*

Hands-on: Examine Output Files

Hands-on: Post-Process Data + Visualization

We will use **utility files** to post-process data and use **gnuplot and VMD** to visualize data:

- 1. Visualize charge densities
 - Run utility file: gcube.f90
 - Visualize cube files in **VMD**

- 2. A plot of the Kohn-Sham eigenenergies vs. time
 - Run utility file: eig_exocc.f90
 - Run **gnuplot script** to create png image

Hands-on: Post-Process Data – Charge Density

1. Check your current directory:

\$ pwd

...staging/QXMD_Session/QXMD/Example/05_NAQMD/01_MoSe2/data

2. Change to analysis/GCube directory

\$ cd ../analysis/GCube
\$ ls
gcube.f90

3. Compile and run utility file for wavefunctions \$ ifort gcube.f90 -0 gcube \$./gcube -d ../../data -n 101 -ib 36 -eb 37

4. Check if post-processing was successful

\$ ls

gcube

gcube.f90

state.36.00000.cube state.37.000000.cube

Filezilla

Materials Genome Innovation

Load HOMO charge density (<u>H</u>ighest <u>O</u>ccupied <u>M</u>olecular <u>O</u>rbital)

Open VMD File -> New Molecule

Browse -> select/path/to/state.36.000000.cube

Click Load

Graphics -> Representations	Graphical Representations
• • • • • • • • • • • • • • • • • • •	Selected Molecule
File Molecule Graphics Display Mouse Extensions Help	
ID T A D F Representations	Create Rep Delete Rep
O TADES Lotors pe 12 1 1	VDW Name all
Labels	
Tools	
✓ ✓ zoom □ Loop ▼ step ✓ 1 ▶ speed ■ ▶ ▶	Selected Atoms
	Draw style Selections Trajectory Periodic Coloring Method Material
	Name
	Drawing Method
Drawing Method: VDW	VDW Default
Sphere Scale: 0.3	Sphere Scale 4 1 1.0
	Sphere Resolution 4 1 12
e ²⁰⁰ 7	
MAGICS	
rials Genome Innovation Computational Software	♦ Apply Changes Automatically Apply

Load LUMO charge density (Lowest Unoccupied Molecular Orbital)

Open VMD File -> New Molecule

Browse -> select/path/to/state.37.000000.cube

Click Load

Graphics -> Representations

		Mark Damage	1.	
Craphics > Depresentations	Grap	ical Representations		
Graphics -> Representations	1: Eigy d 37.00	Selected Molecu		
		0000.cubc		
	Create Rep		Delete Rep	
	Style	Color	Selection	
	Isosurface	ColorID 1	<volume></volume>	
	Selected Atoms			
	all	0010000047401110		
	Draw style Cal	actions Trainet	and Dariadia	
	Coloring Meth	nod	Material	
Set Coloring Method: ColorID, 1 (Red)	ColorID	▼ 1 ▼ Op	aque 🔻	
	Drawing Math			
Set Drawing Method: Isosurface	Isosurface		Default	
	Range 17191	17313 Vol vol	0: Eigv.d.37	
•	Isovalue -0.06	8398		Set Isovalue: your choice
	Step 📢 🕴 1	Draw Sol	lid Surface	Set Draw: Solid Surface
	Size 机 🚺 1	Show Iso	surface	Set Show: Isosurface
200Z				
				QXMD
$\lambda \Delta C C$				
Materials Genome Innovation	Apply C	hanges Automat	tically Apply	
for computational software []			10	

choice!

Hands-on: Post-Process Data - Eigenenergies

1. Check your current directory:

\$ pwd ...staging/QXMD_Session/QXMD/Example/05_NAQMD/01_MoSe2/analysis/GCube

2. Change to eig/ directory \$ cd ../eig

3. Compile and run utility file for eigenenergies

EIG.dat eig_exocc eig_exocc.f EIG_occ-one.dat EIG_occ-two.dat

\$ ifort eig_exocc.f -o eig_exocc
\$./eig_exocc -d ../../data

4. Check if post-processing was successful

SIS

plot_eig.gnu

Hands-on: Visualize Data - Eigenenergies

1. Check your current directory:

\$ pwd
....staging/QXMD_Session/QXMD/Example/05_NAQMD/01_MoSe2/analysis/eig

2. Run gnuplot script **\$ gnuplot plot_eig.gnu**

3. Check if plotting was successful \$ ls EIG.dat eig.png eig_exocc eig_exocc.f EIG_occ-one.dat EIG_occ-two.dat plot_eig.gnu

4. Copy 'eig.png' to your local computer to view!

Filezilla

Materials Genome Innovation

Hands-on: Visualize Data - Eigenenergies

Energies and occupations of the electronic bands, as a function of time, after simulating photoexcitation a 2x2x1 supercell of monolayer MoSe₂.

