Introduction to QXMD

Subodh Tiwari Lindsay Bassman, Aravind Krishnamoorthy *Collaboratory for advanced computing and Simulation*

Department of Material Science & Department of Physics University of Southern California

Materials Genome Software Courseware 2019

"This work was supported as part of the Computational Materials Sciences Program funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award Number DE-SC00014607."

QXMD is scalable parallel quantum molecular dynamics engine.

QXMD is scalable parallel quantum molecular dynamics engine.

Non-adibatic Quantum Molecular Dynamics (NAQMD)

QXMD is scalable parallel quantum molecular dynamics engine.

Non-adibatic Quantum Molecular Dynamics (NAQMD)

Multiscale Shock theory (MSST)

External Electric Field

External Electric Field

NAQMD under External Electric Field

Outline

- **1- Optimization of Geometry**
- Hands-on I: Optimization of water and analysis
- 2- Non-adiabatic Quantum Molecular Dynamics
- Hands-on II: Excited state dynamics of MoSe₂

Download

Download from GitHub: \$ git clone <u>https://github.com/USCCACS/QXMD.git</u> \$ cd QXMD

Software Package

Examples: Example problem of QXMD Lib: Psuedopotential Program: Program executable and input template Util: Utility files for QXMD codes

Directory Structure

IN.PARAM: Template input file with complete input settings

Directory Structure

\$ cd ../Examples

01_Optimization

02_Adiabatic 03_NAQMD 04_MSST

\$ cd 01_Optimization

Directory Structure: 01_Optimization

\$ cd 01_Optimization

Directory Structure

\$ cd control

Directory Structure-Control

PAW directory should be replaced with **USPP** for ultra soft Pseudopotential

Control Directory

control/NCPP/

NCPP directory must contain potential file for each atom used in

.

Example: For H₂O, we have H.PBE and O.PBE

control/CONFIG

\$ less CONFIG

This file contains ionic positions either in fractional coordinate or real coordinate

Example:

Real

75 1 0.000 0.000 0.0

2 1.757 -0.586 0.0

Units are Å or bohr

CONFIG

control/CONFIG

Both fractional or real can be given as input

CONFIG (Water/MoSe₂)

Units are Å or bohr

IN.PARAM

\$ less IN.PARAM

control/IN.PARAM

Main control file

A Template is provided with your program

Control file is divided into several sections. Each section start with its ***SECTION_NAME** and ends with ***end**.

Input File: Enable/Disable calculation

Enabling section

Each section name must start with 1 column of the file to enable

Disabling section

To disable set **false** at the sub-section (How).

Other option is to entirely delete the section. If it's required program will take a default value.

Mandatory Input: Parallel

*parallel	:
(QM-nodes)	•
111	: (npx, npy, npz)
(k-points)	•
1	: (npk)
(MD-nodes)	•
111	: (md_npx, md_npy, md_npz)
*end	:

QM-Nodes: Parallelization over band

K-points: Parallelization over k-points

MD-nodes: Used for divide-conquer-recombine algorithm for order N DFT code

Mandatory Input: restart/PAW

*start	:
(on/off)	•
.false.	: (lstart) .true. = restart
*end	:

Set .true., if you would like to restart your job from previous file. QM_\$file must be present to restart a job.

Mandatory Input: restart/PAW

*start	:	
(on/off)	•	
.false.	: (lstart) .true. = restart	
*end	:	

Set .true., if you would like to restart your job from previous file. QM_\$file must be present to restart a job.

*PAW	:
(on/off)	:
.true.	: (lpaw) .true. = PAW method : .false. = pseudopotential method
*end	

.true. Projected Augmented Wave method.false. pseudopotential method

Mandatory Input: Exchange Correlation

*approximation for Exc	:
(approximation)	:
2	: 1:LDA, 2:GGA(PBE)
(DFT-D)	•
.true.	:(ldftd)
*end	

Mandatory Input: Exchange Correlation

*approximation for Exc	:
(approximation)	•
2	: 1:LDA, 2:GGA(PBE)
(DFT-D)	•
.true.	:(ldftd)
*end	

Approximation

LDA	1
GGA	2
GGA(RPBE)	3
GGA(revPBE)	4
vdW-DF	5
vdW-DF2	6

Mandatory Input: Exchange Correlation

	*approximation for Exc (approximation) 2 (DFT-D) .true. *end	: : :1:LDA, 2 : :(ldftd)	:GGA(PBE)
Appr	oximation		
LDA	1	Empiric	al Correction
GGA	2	DFT-D	vdW interaction
GGA(RPBE)	3	DFT-U	Mean field
GGA(revPBE)	4	DITC	Hubbard model
vdW-DF	5		
vdW-DF2	6		

HSE function can be used by turning on range separated function

Mandatory Input: SCF

SCF: Self consistent field

Tolerance are relative change between two successive run. Units are in a.u.

*molecular dynamics (method)		
l Moth	: (IIMO)	
Ivietno	Da	
Debug	0	
Optimization	1	
NVE	2	
NVT	3	
NPT	4	
MSST	10	

*molecular dynamics (method) 1	: : : (ifmd)	
Metho	d	
Debug	0	
Optimization	1	
NVE	2	
NVT	3	
NPT	4	
MSST	10	
(time step) 0.1d0 1000 time step, total step	: : (dtmd, nstop)	

Time step is in a. u.

(temperature)	: only for real dynamics (NVE-, NVT-, NPT-MD)
300.d0	: (treq) temperature in [K]
(check temperature)	:
.false.	: (liscale) .true. = Do it !
25	: (iscnum) total number of temperature check
20	: (iscstp) skip step

If check temperature is true: First 500 step will have velocity scaling. Since we have set it to false, no velocity scaling will be done

iscnum=Total number of scaling performed
iscstp= scale every iscstp step

(optimization)	: only for structural optimization (ifmd == 1)
2	: (ioptmze)
25	: (iscnum) number of temperature check
20	: (iscstp) skip step
.false.	: (liscale) .true. = Do it !
(check temperature)	:
(temperature)	: only for real dynamics (NVE-, NVT-, NPT-MD)
300.d0	: (treq) temperature in [K]

Method

Do not optimize coordinate	-1
Conjugate gradient	0
Projected Velocity Verlet	1
Quasi Newton Method	2

(stabilizer for quasi-N	(ewton) :
0.1d0	: (gammamin)
	:
(clear Hessian)	:
0	: (ibfgsclear) clear Hessian every ibfgsclear step

(stabilizer for quasi-N	Newton) :
0.1d0	: (gammamin)
	:
(clear Hessian)	:
0	: (ibfgsclear) clear Hessian every ibfgsclear step
(tolerance)	: tolerance (ifmd == 1)
1.d-07	: (tol_energy) energy/atom in [a.u.]
5.d-04	: (tol_force) max. force in [a.u.]
*end	

Tolerance is in the unit of Hartree and Hartree/bohr

Mandatory Input: Supercell/Cutoff Energy

*supercell	:
(unit of length)	•
(ang)	: (bohr) or (ang)
	•
(lengths & angles)	:
7.00d0, 7.00d0, 5.0d0	: lengths of cell vectors
90.000, 90.000, 90.000	: angles between cell vec. in [deg.]
*end	

Mandatory Input: Supercell/Cutoff Energy

*supercell	:
(unit of length)	:
(ang)	: (bohr) or (ang)
	:
(lengths & angles)	:
7.00d0, 7.00d0, 5.0d0	: lengths of cell vectors
90.000, 90.000, 90.000	: angles between cell vec. in [deg.]
*end	
*planewaves	:
(unit of cutoff energy)	:
(ry)	: (ry) or (hr) or (ev)
(for wavefunctions)	:
30.0	: (ecut)
(for electron density)	:
250.0	: (ecutdens)
(for soft part of density)	•
70.0	: (ecutsoft)
*end	:

Mandatory Input: Supercell/Cutoff Energy

Min occupied bands =
$$\frac{No.of \ electron}{2} \times 1.1$$

Water =
$$\frac{8}{2} \times 1$$
. 1 = 4.4 \cong 5

Empty band= 1-20 Unit of smearing is Kelvin

Mandatory Input: atom

*atoms	
(snecies)	•
	: (ntype) No. of atomic species
(atomic number)	· · · · · · · · · · · · · · · · · · ·
8.0	: (zatom)
(pseudopotential)	
uspp	: kbpp .or. uspp .or. vand
(nonlocal potential)	
.true. 1.5d0 1.25d0 0.8d0	: (lking) .true. = on, (rking, gkgmax, gkgexct)
(local potential)	
.false. 1.5d0 1.15d0 0.8d0	: (llking) .true. = on, (rlking, glkgmax, glkgexct)
(partial core correction)	
.true. 1.4d0	: (lpcc) .true. = on, (r_cut) in [a.u.]
.true. 1.1d0 1.15d0 0.8d0	: (lpking) .true. = on, (rpking, gpkgmax, gpkgexct)
	: smoothing parameters

Mandatory Input: atom

For fix position .true., create a new atom ID and set fix position true

Some optional Input: dump

*dump charge density	:
(on/off)	:
.true.	: (ldpchg) .true. = Do it !
(skip step)	: only for molecular dynamics
5	: (nskip dpchg)
(output area)	: output area for charge density
1.0 0.0	: x min & x max
1.0 0.0	: y [_] min & y [_] max
1.0 0.0	z min & z max
*end	:
*dump wavefunctions	:
(on/off)	:
.true.	: (ldpwav) .true. = Do it !
(bands)	
79, 85	: (ibstt1,ibstt2) band index (0, 0 -> all bands)
(skip step)	: only for molecular dynamics
5	: (nskip dpwav)
*end	

If $(x_{min} > x_{max})$ dump charge density for whole space

Some optional Input: On the fly results

*stress calculation	: only for bulk calculations
(on/off) :	
.true.	: (lstress) .true. = Do it !
(skip step)	: only for molecular dynamics
5	: (nskip_stress)
*end	:
	•
*atomic charge	:
(on/off) :	
.true.	: (lintchg) .true. = Do it !
(skip step)	: only for molecular dynamics
5	: (nskip intchg)
*end	•

\$ pwd

../QXMD/Examples/01_Optimization/01_water/control

\$ cd ..

Run qxmdmpi executable

Example:01

\$ cd data

md_box.d md_cel.d md_eng.d md_frc.d md_ion.d md_log md_spc.d qm_box.d qm_cel.d qm_eig.d qm_eng.d qm_fer.d qm_frc.d qm_ion.d qm_log qm_zan.d

Output files

Output files: qm_ion.d \$ less qm ion.d Comment # Atomic scaled coordinates 0 2 1 2 1.000000E-01 4.28571 4.28571 7.00000 5.71429 4.28571 6.80000 3.00000 4.28571 6.80000 2 2 1 1 1.000000E-01 4.29596 4.28571 7.00366 5.71100 4.28571 6.79902 2.99305 4.28571 6.79732 2 2 2 1

Output file: qm_ion.d

Step number, No of atom type, Atom type 1, Atom type 2

Output File: qm_ion.d

Scaling factor for position of each atoms

Output File: qm_ion.d

#	# Atomic	c scaled	coordina	ates					
	0	2	1	2					
	1.000000	0E-01							
	4.28571	4.28571	7.00000	5.71429	4.28571	6.80000	3.00000	4.28571	6.80000
	1	2	1	2					
	1.000000	0E-01							
Γ	4.29596	4.28571	7.00366	5.71100	4.28571	6.79902	2.99305	4.28571	6.79732
	2	2	1	2					

Coordinate of each atom laid out in x, y, z

\$ press q to exit

Output File: qm_box.d

\$ less qm_box.d

#	supercell (FFT cel	l) vectors (le	ngths & angles)	Comm	ent
#	L_1	L_2	L_3	angle(2-3)	angle(3–1)	angle(1-2)
	0 1.3228082E+01	1.3228082E+01	9.4486299E+00	90.000000	90.000000	90.000000

Box length in bohr (a.u.)

\$ press q to exit

Output File: md_eng.d

Output files: md_eng.d

\$ less md_eng.d

<pre># step P.E. [hartree]</pre>	Comment
0 -2.1951549312E+01	
1 -2.1954246118E+01	
2 -2.1959473771E+01	
3 -2.1961990569E+01	
4 -2.1972379455E+01	Step and energy (hartree)
5 -2.1978050971E+01	step and energy (narriet)
6 -2.1983590094E+01	
7 -2.2000540405E+01	
8 -2.2001983644E+01	
9 -2.2002236635E+01	
10 -2.2002297278E+01	
<u>11 -2.2002</u> 316458E+01	

\$ press q to exit

Analysis

Start VMD

• It will open 3 windows

Load the MD-Trajectory PDB File

• In the File menu in the VMD main window, select New Molecule; the following new window will open.

000	Molecule File Browser
Load files for: Ne	w Molecule
Filename: SCI596	SCV-14F/src/SeqMD/data/imd.xyz Brov se
Determine file typ Automatically	e: Loed
Frames;	Volumetric Datasets
First: Last	Stride:
C Load n back	pround
O Lond all at on	ce

Drag and drop the XYZ file you have created in the Filename field (or press the browse button to locate the file).
 Click the Load button to load the file.

Load the MD-Trajectory PDB File

• Click on Representation to make add different representation of each atoms

Choose the Graphic Representation

 In the Graphics menu in the VMD main window, select Representations; the following new window will open.

Display now looks like this

- In the Drawing Method menu,
 - choose the VDW (van der Waals radius) representation.

Choose the Graphic Representation

QXMD

Play Movie

Display now looks like this

 In the Graphical Representations window; click on Create Rep

Play movie

Display now looks like this

 In the Graphical Representations window; click on Create Rep

Visualizing Energy convergence

Go to "eng" analysis directory

Run a GNUplot script to generate figure. You can choose any other line plotting software to generate same figure

\$ gnuplot plot_eng.p

This will generate a file named "eng.png". Bring it on your computer using filezilla/SCP and visualize.

End of Section I

Thank you for your attention

Acknowledgement

<u>A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum</u> <u>molecular dynamics simulations</u>

F. Shimojo, R. K. Kalia, M. Kunaseth, A. Nakano, K. Nomura, S. Ohmura, K. Shimamura and P. Vashishta, Journal of Chemical Physics 140, 18A529 (2014).

Materials software (QXMD) used in this research was produced by USC MAGICS Center that is a part of the Computational Materials Sciences Program funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award Number *DE-SC0014607*.

