Reactive Force Field (ReaxFF) : Its concepts and application

Sungwook Hong and Ken-ichi Nomura

Collaboratory for Advanced Computing & Simulations (CACS)
University of Southern California

Gaithersburg Marriot Washingtonian Center, November 12, 2018

Outline

1. Basic concepts of ReaxFF

- Multi-scale computational modeling
- ReaxFF general energy terms
- Key features of ReaxFF
- ReaxFF flow diagram

2. Application of ReaxFF to complex nanoscale systems

- Chemical vapor deposition synthesis of MoS₂ layers
- 3. Summary and future work

Outline

1. Basic concepts of ReaxFF

- Multi-scale computational modeling
- ReaxFF general energy terms
- Key features of ReaxFF
- ReaxFF flow diagram
- 2. Application of ReaxFF to complex nanoscale systems
 - Chemical vapor deposition synthesis of MoS₂ layers
- 3. Summary and future work

Multi-scale Computational Modeling

Distance

4

What is Molecular dynamics (MD) simulation?

Numerically solve Newton's equation of motion

$$\vec{F}(t) = m \frac{d^2 \vec{r_l}}{dt^2} = -\frac{d}{d\vec{r_l}} V(\vec{r_l} \dots \vec{r_N})$$

Interatomic potential; force field

ReaxFF general energy terms*

$$E_{system} = E_{bond} + E_{over} + E_{val} + E_{tors} + E_{vdWaals} + E_{Coulomb}$$
 Bonded interactions Non-bonded interactions

E_{bond}: Bond energy; two-body attractive term

E_{over}: Over-coordination energy; penalty for overcoordinating atoms

E_{val}: Angle strain energy; three-body term

E_{tors}: Torsion energy; four-body term

E_{vdWaals}: van der Waals interactions

E_{Coulomb}: Coulomb interactions

^{*}van Duin, Adri CT, et al. The Journal of Physical Chemistry A 105 (2001): 9396-9409.

Key features of ReaxFF – 1*

 A bond order is calculated and updated every step, thus allowing for chemical reactions during MD simulations.

A bond-order/distance relationship

$$BO'_{ij} = \exp\left[p_{bo,1} \cdot \left(\frac{r_{ij}}{r_o^{\sigma}}\right)^{p_{bo,2}}\right]$$

$$+ \exp\left[p_{bo,3} \cdot \left(\frac{r_{ij}}{r_o^{\pi}}\right)^{p_{bo,4}}\right]$$

$$+ \exp\left[p_{bo,5} \cdot \left(\frac{r_{ij}}{r_o^{\pi\pi}}\right)^{p_{bo,6}}\right]$$

C-C bond order

^{*}Russo, Michael F., and Adri CT van Duin. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* **269** (2011): 1549-1554.

- Key features of ReaxFF 2*
 - All bonded-interactions are made of bond-order dependent.

$$E_{bond} = -D_e^{\sigma} \cdot BO_{ij}^{\sigma} \cdot f(BO_{ij}^{\sigma}) - D_e^{\pi} \cdot BO_{ij}^{\pi} - D_e^{\pi\pi} \cdot BO_{ij}^{\pi\pi}$$

Key features of ReaxFF – 3*

- Non-bonded interactions (van der Waals and Coulomb) are calculated between every atom pair. (*i.e.*, no exception)
- ReaxFF employs the QEq method,** a geometry-dependent point charge calculations scheme, to update point charges for the entire system.

$$E_{vdWaals} = Tap \cdot D_{ij} \cdot \left\{ \exp \left[\alpha_{ij} \cdot \left(1 - \frac{f_{13}(r_{ij})}{r_{vdW}} \right) \right] - 2 \cdot \exp \left[\frac{1}{2} \cdot \alpha_{ij} \cdot \left(1 - \frac{f_{13}(r_{ij})}{r_{vdW}} \right) \right] \right\}$$
 A shielded Morse potential

$$f_{13}(r_{ij}) = \left[r_{ij}^{p_{vdW1}} + \left(\frac{1}{\gamma_w}\right)^{p_{vdW1}}\right]^{\frac{1}{p_{vdW1}}}$$

$$E_{\text{Coulomb}} = C \cdot \frac{q_i \cdot q_j}{\left[r_{ij}^3 + (1/\gamma_{ij})^3\right]^{1/3}}$$

A shielded Coulomb potential

^{*}Russo, Michael F., and Adri CT van Duin. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* **269** (2011): 1549-1554.

^{**}Rappe, Anthony K., and William A. Goddard III. *The Journal of Physical Chemistry* **95** (1991): 3358-3363.

ReaxFF flow diagram*

^{*}Senftle, Thomas, et al. npj Computational Materials 2 (2016).

- How to get ReaxFF reactive force field parameters?
 - Do search Google Scholar: https://scholar.google.com/
 - Develop your ReaxFF force field parameters (non-trivial)

A Step for the force field training

1. Set up training sets with QM data

2. Optimize ReaxFF parameters using a single-search scheme*

3. Validate the ReaxFF parameters by performing MD simulations of simple systems

Minimize the total error

Error =
$$\sum_{i=1}^{n} \left[\frac{\left(x_{i,QM} - x_{i,ReaxFF} \right)}{\sigma} \right]^{2}$$

^{*} van Duin, A. C. T.; Jan, M.; de Graaf, B. J. Chem. Soc., Faraday Trans. 1994, 90, (19), 2881-2895.

Outline

1. Basic concepts of ReaxFF

- Multi-scale computational modeling
- ReaxFF general energy terms
- Key features of ReaxFF
- ReaxFF flow diagram

2. Application of ReaxFF to complex nanoscale systems

- Chemical vapor deposition synthesis of MoS₂ layers
- 3. Summary and future work

I. Background/motivation

Computational synthesis of layered materials

Mono-layered MoS₂

- has unique electric and optoelectronic characteristics [1]
- can be applied to next-generation electronic devices

Synthesis Method?

Research Question?

Research

What is the reaction mechanism of sulfidation of MoO₃ surface at the atomic level?

Synthesis of clean and uniform mono-layered MoS₂ is still challenging.

Research Goal:

Develop a ReaxFF reactive force field for Mo/O/S systems to gain atomistic-scale insights into the sulfidation of MoO₃ surfaces.

^[1] Gupta, Ankur, Tamilselvan Sakthivel, and Sudipta Seal. "Recent development in 2D materials beyond graphene." Progress in Materials Science 73 (2015): 44-126.

^[2] Lee, Yi-Hsien, et al. "Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition." Advanced Materials 24.17 (2012): 2320-2325.

^[3] Taheri, Payam, et al. "Growth mechanism of largescale MoS2 monolayer by sulfurization of MoO3 film." Materials Research Express 3.7 (2016): 075009.

II. Methods

How do we develop ReaxFF reactive force field parameters?

■ Atomic charges

□ Angle distortion energy

☐ Full bond dissociation curve

□ Equations of state for crystal systems

• Step 1. O₂ evolution from a MoO₃ surface

 \triangleright At elevated temperatures (T > 1300 K), a MoO₃ surface is self-reduced by O₂ evolution.

 \square Reaction mechanism of the O_2 evolution at high temperatures by RMD simulations

$$2 - Mo = O_t^* \rightarrow 2 - Mo = ^* + O_2 \uparrow$$
O-termination Mo-dangling bond

: At high temperatures, a MoO₃ surface undergoes self-reduction by disordered O-termination sites, leading to Mo-dangling bonds.

^{*} Surface species

• Step 2. SO/SO₂ formation from a MoO_{2.6} surface

RMD simulation of CVD synthesis of MoS₂ layers (up to 1.2 ns)

- ➤ A MoO_{2.6} surface, reduced by the previous step, is exposed to S₂ gas molecules for CVD simulations
- ➤ MoO_{2.60} surface was further reduced and partially sulfurized by forming SO and SO₂ products.

☐ Reaction mechanisms of the SO/SO₂ formation by RMD simulations

Step 3. Mo-S bond formation on MoO_xS_y

- > Surface defect was generated because of O removals and follow-up Mo redistribution.
- ➤ Mo/S configurations at 7.2 ns are qualitatively consistent with a portion of MoS₂ structures (Mo-S termination, Mo-S-Mo bridge, and MoS₂ edge)

Outline

1. Basic concepts of ReaxFF

- Multi-scale computational modeling
- ReaxFF general energy terms
- Key features of ReaxFF
- ReaxFF flow diagram

2. Application of ReaxFF to complex nanoscale systems

• Chemical vapor deposition synthesis of MoS₂ layers

3. Summary and future work

3. Summary and future plan

- RMD simulations coupled with ReaxFF enable us to study physical and chemical properties of complex nanoscale system.
- Large-scale and long-time RMD simulations will be performed to investigate:
 - 1. Further growth of MoS₂-like structures
 - 2. Healing of surface defects for further introduction of sulfur precursor

Funding:

