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1. Basic concepts of ReaxFF

* Multi-scale Computational Modeling

QM methods:
-Fundamental; electronic level
C] : Atomistic -Computationally expensive
: Super- atomistic -Small systems (~100 atoms)
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Elecirons Atcrns Gra‘ins Grids Classical FE methods:
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FF ReaxFF:
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1. Basic concepts of ReaxFF

* What is Molecular dynamics (MD) simulation?

i(t=0)

Tilt=t)

Numerically solve Newton's
equation of motion
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dt2 ~  dr

F(t) = m VG ) |

Interatomic potential; force field
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1. Basic concepts of ReaxFF

* ReaxFF general energy terms”

E system = Lbond + £ over + £ val + £ tors +E vdWaals + £ Coulomb
| | | J
I i
Bonded interactions Non-bonded interactions

E,.nq: Bond energy; two-body attractive term
E ... Over-coordination energy; penalty for overcoordinating atoms

E,.;: Angle strain energy; three-body term

val*
E,.: Torsion energy; four-body term

E,qwaals: Van der Waals interactions
Ecoulomp: Coulomb interactions

*van Duin, Adri CT, et al. The Journal of Physical Chemistry A 105 (2001): 9396-9409.



1. Basic concepts of ReaxFF
* Key features of ReaxFF — 1"

= A bond order is calculated and updated every step, thus allowing for chemical
reactions during MD simulations.

A bond-order/distance relationship C-C bond order
1
. i Pro2 3 — Bond order(uncorrected)
BOij = exp- pbo,l ) —o' —— Sigma bond
’:’ o — Pi bond
) - ) - % 2 — Double pi bond
Pbo,a ol
. ’;J o
+CX]| pbo,3 T S
% 0 4 Bond Order
_ P
’;J bo,6
+EXp P, bo,5 | 0
v 1 15 2 2.5 3

- - Interatomic distance (A)

*Russo, Michael F., and Adri CT van Duin. Nuclear Instruments and Methods in Physics Research Section B: Beam
Interactions with Materials and Atoms 269 (2011): 1549-1554.



1. Basic concepts of ReaxFF
» Key features of ReaxFF —2*

= All bonded-interactions are made of bond-order dependent.

E,

ond

-D?-BOS - f(BOY)-D~ - BO} - DI - BOT”

100

. 15 2 25 3__ Interatomic distance (A)

-100

-200 — Sigma energy

— Pi energy Bond Energy

= Double pi energy

-300

Bond energy (kcal/mol)

400 — Total bond energy

-500

*Russo, Michael F., and van Duin, Adri. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and
Atoms 269 (2011): 1549-1554.



1. Basic concepts of ReaxFF
» Key features of ReaxFF — 3"

= Non-bonded interactions (van der Waals and Coulomb) are calculated between every atom
pair. (i.e., no exception)

= ReaxFF employs the QEq method,™ a geometry-dependent point charge calculations
scheme, to update point charges for the entire system.

[ i Ji3(7) |1 J13(r) 1 A shielded Morse
E.iwaas = Tap- Dy - yexp|a; - |1-———||-2-exp 5 A B potential
Foaw oaw
1000
1
1 Pvaw1 Pyaw 1
Jis(r) =i + (—) = 7501
Tw £ — Unshielded Coulomb
§ 500 ~—Shielded Coulomb
a.+q P ——Unshielded vdWaals
E =C- 1i 9 o — Shielded vdWaals
Coulomb ~— ™~ 3 34173 w250 -
[ry + (Ly,)°]
A shielded Coulomb potential 0 . . . . :

0 0.5 1 1.5 2 25 3
Interatomic distance (A)

*Russo, Michael F., and Adri CT van Duin. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with
Materials and Atoms 269 (2011): 1549-1554.

**Rappe, Anthony K., and William A. Goddard IIl. The Journal of Physical Chemistry 95 (1991): 3358-3363. Y



1. Basic concepts of ReaxFF

* ReaxFF flow diagram®
a

Atom
positions

]

£

Non-bonding Bonding

*Senftle, Thomas, et al. npj Computational Materials 2 (2016).
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1. Basic concepts of ReaxFF

* How to get ReaxFF reactive force field parameters?

— Do search Google Scholar:
https://scholar.google.com/

— Develop your ReaxFF force field parameters (non-trivial)

A Step for the force field training

Minimize the total error l

o [(x x N
1,0M — XiReaxFF
Error = E[ Q ga= ]
o
=

*van Duin, A. C. T.; Jan, M.; de Graaf, B. J. Chem. Soc., Faraday Trans. 1994, 90, (19), 2881-2895.
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2. Application of ReaxFF to complex nanoscale systems

e Chemical vapor deposition synthesis of MoS, layers



I. Background/motivation

 Computational synthesis of layered materials

Chemical Vapor Deposition (CVD)
Synthesis Approach 1 [2] Approach 2 [3]

9 e-beam evaporation
Method? 00000 —_—

.y

Substrate

Mono-layered MoS,

N,

——

sapphire MoO, I

- has unique electric and optoelectronic
characteristics [1]

- can be applied to next-generation electronic
devices

zone 2

MoO, s zone 1
o) S .
000000 MoO, __ sulfur .\ N,

MoO; powder + S powder | Pre-deposited MoO; surface + S powder

Research Research
Question? Problem?

What is the reaction mechanismof Synthesis of clean and uniform mono-layered
sulfidation of MoQ; surface at the atomic MoS, is still challenging.

level?

‘ Research Goal:

Develop a ReaxFF reactive force field for Mo/O/S systems to gain atomistic-scale

insights into the sulfidation of MoQOj; surfaces.

[1] Gupta, Ankur, Tamilselvan Sakthivel, and Sudipta Seal. "Recent development in 2D materials beyond graphene." Progress in Materials Science 73 (2015): 44-126.
[2] Lee, Yi-Hsien, et al. "Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition." Advanced Materials 24.17 (2012): 2320-2325.
[3] Taheri, Payam, et al. "Growth mechanism of largescale MoS2 monolayer by sulfurization of MoO3 film." Materials Research Express 3.7 (2016): 075009. 13



 How do we develop ReaxFF reactive force field parameters?

I1. Methods

O Atomic charges

-0.48

-0.49
-0.42

3
-0.72
-0.74

ReaxFF: Red, top number
DFT: Black, bottom number

-0.46 3-:2
0.96 }0'45 P 0.23
0.86 . -0.27
- -0.23
-0.25
-0.17
-0.20

U Angle distortion energy

Relative energy (kcal/mol)

40

35+

N N W
o o o
1 1 1

151

-
o o o
1 1 1

]
o

90 100 110 120 130 140 150 160 170 180
S-Mo-O angle (degrees)

U Full bond dissociation curve

U Equations of state for crystal systems

Relative energy (kcal/mol)

Relative Energy (kcal/mol)

200

—— ReaxFF .
180 - - i
DFT Mo-O single bond

160 -

-
»H
o
1
1

1204 E

100 -

T T T T T T

T T
15 2.0 25 3.0 3.5 4.0 4.5 5.0
Mo-O Bond distance(A)

1401 . DFT (VASP) ]
1201 —— ReaxFF

100 +
80—.
60—-
a0

20 +

0-
—71 T T T T T T T 1 1 T 7
1 12 13 14 15 16 17 18 19 20 21

Volume/atom ( A3)

14



II1. RMD simulations: a three-step sulfidation process

* Step 1. O, evolution from a MoQO; surface

60

50+
40
30

20

Number of O, gas molecules

800 1200

Temperature (K)

1600

" 2000

RMD simulation of O, evolution from a MoQO5/Al,O3 surface

—

Vacuum layers —

MoOj; surface

AlLOj3 substrate

> At elevated temperatures (T > 1300 K), a MoOj; surface is self-reduced by O, evolution.
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II1. RMD simulations: a three-step sulfidation process

U Reaction mechanism of the O, evolution at high temperatures by RMD
simulations

Mo Mo —> Mo Mo

2-Mo=0, - 2—-Mo="
i ] I
I I

O-termination Mo-dangling bond

+ 0,1

J

* Surface species

: At high temperatures, a MoQO3 surface undergoes self-reduction by disordered
O-termination sites, leading to Mo-dangling bonds.
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II1. RMD simulations: a three-step sulfidation process

* Step 2. SO/SO, formation from a MoO, ¢ surface

RMD simulation of CVD synthesis of MoS, layers (up to 1.2 ns)
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° ° N wep & 4 9 ® v
' & B 2 g, T o I ¢
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= )/ «J/J/x o ¢ o7 f é° 2.6 b
S:gas p oo S S , s abg® ) previous step, is exposed to S, gas
N B o T molecules for CVD simulations
o f)' Jl v\i ™ ] IJ/ ® oo o »
f 2 ’ I G - d
2 lagOnegl . 7 “ > MoO,, surface was further reduced
) SRl % - ol T P ¥ and partially sulfurized by forming SO
. ° 3 ~ A R ¢ ~
’ o b 2 s DY and SO, products.

Mo, 6 surface

Al;O3 substrate
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II1. RMD simulations: a three-step sulfidation process

1 Reaction mechanisms of the SO/SO, formation by RMD simulations

\

Mo Mo
i MO0 (010)

—Mo=S, + —Mo=0 - —Mo—-S + —Mo=* + SO0(g1
— S — —
S,-termination O-termination S-termination Mo-dangling bond
‘ * Surface species
Mo Mo

%

—Mo=0, + SO(g) - —Mo =
\_'_l \_'_l

O-termination Mo-dangling bond 18

+ SO0,(g)1



II1. RMD simulations: a three-step sulfidation process

* Step 3. Mo-S bond formation on MoO,S,

.m0 MoO; surface (1= 0.0 ns) MoO, ;S 56 surface (¢ = 7.2 ns)
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» Surface defect was generated because of O removals and follow-up Mo redistribution.
» Mo/S configurations at 7.2 ns are qualitatively consistent with a portion of MoS, structures (Mo-S

termination, Mo-S-Mo bridge, and MoS, edge)
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3. Summary and future work



3. Summary and future plan

 RMD simulations coupled with ReaxFF enable us to
study physical and chemical properties of complex
nanoscale system.

* Large-scale and long-time RMD simulations will be
performed to investigate:

1. Further growth of MoS,-like structures

2. Healing of surface defects for further introduction of
sulfur precursor
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